Tokyo Journal of Mathematics

Deligne-Lusztig Induction for Invariant Functions on Finite Lie Algebras of Chevalley's Type


Full-text: Open access


Let $G$ be a connected reductive algebraic group defined over $\mathbb{F}_q$ with Lie algebra $\mathcal{G}$. We define a Deligne-Lusztig induction for the $\overline{\mathbb{Q}}_{\ell}$-valued functions on $\mathcal{G}(\mathbb{F}_q)$ which are invariant under the adjoint action of $G(\mathbb{F}_q)$ on $\mathcal{G}(\mathbb{F}_q)$, by making use of the ``character formula'' where the ``two-variable Green functions'' are defined via a $G$-equivariant homeomorphism $\mathcal{G}_{nil}\rightarrow G_{uni}$. We verify that it satisfies properties analogous to the group case like transitivity, the Mackey formula or the commutation with duality. The interest of a Deligne-Lusztig induction for invariant functions comes from a conjecture on a commutation formula with Fourier transforms which has no counterpart in the group case. In a forthcoming paper, this conjecture will be proved in almost all cases.

Article information

Tokyo J. Math., Volume 28, Number 1 (2005), 265-282.

First available in Project Euclid: 5 June 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


LETELLIER, Emmanuel. Deligne-Lusztig Induction for Invariant Functions on Finite Lie Algebras of Chevalley's Type. Tokyo J. Math. 28 (2005), no. 1, 265--282. doi:10.3836/tjm/1244208292.

Export citation


  • C. Bonnafé, Formule de Mackey pour $q$ grand, J. Algebra 201 (1998), no. 1, 207–232.
  • C. Bonnafé, Mackey formula in type A, Proc. London Math. Soc. (3) 80 (2000), no. 3, 545–574.
  • C. Bonnafé, A note on centralizers of unipotent elements, preprint of Laboratoire de mathématiques de Besancon 19 (2002).
  • A. Borel, Linear algebraic groups, Springer-Verlag (second enlarged edition).
  • P. Deligne, Cohomologie étale, Springer-Verlag, Berlin, 1977, Séminaire de Géométrie Algébrique du Bois-Marie SGA $4{1\over 2}$, Avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier, Lecture Notes in Mathematics, Vol. 569.
  • P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. (2) 103 (1976), no. 1, 103–161.
  • P. Deligne and G. Lusztig, Duality for representations of a reductive group over a finite field. II, J. Algebra 81 (1983), no. 2, 540–545.
  • François Digne and Jean Michel, Foncteurs de Lusztig et caractères des groupes linéaires et unitaires sur un corps fini, J. Algebra 107 (1987), no. 1, 217–255.
  • François Digne and Jean Michel, Representations of finite groups of Lie type, Cambridge University Press, Cambridge, 1991.
  • J. A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402–447.
  • N. Kawanaka, Fourier transforms of nilpotently supported invariant functions on a simple Lie algebra over a finite field, Invent. Math. 69 (1982), no. 3, 411–435.
  • D. Kazhdan, Proof of Springer's hypothesis, Israel J. Math. 28 (1977), no. 4, 272–286.
  • Gus Lehrer, The space of invariant functions on a finite Lie algebra, Trans. Amer. Math. Soc. 348 (1996), no. 1, 31–50.
  • G. Lusztig, On the Finiteness of the Number of Unipotent Classes, Invent. Math. 34 (1976), 201–213.
  • G. Lusztig, On the Character Values of Finite Chevalley Groups at Unipotent Elements, J. Algebra 104 (1986), no. 2, 146–194.
  • Peter Slodowy, Simple singularities and simple algebraic groups, Springer, Berlin (1980).
  • T. A. Springer, The unipotent variety of a semi-simple group, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London (1969), 373–391.
  • T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207.