Tokyo Journal of Mathematics

Complex Equifocal Submanifolds and Infinite Dimensional Anti-Kaehlerian Isoparametric Submanifolds

Naoyuki KOIKE

Full-text: Open access

Abstract

In a symmetric space of non-compact type, we have recently defined the notion of a complex equifocal submanifold. In this paper, we introduce the notion of an infinite dimensional anti-Kaehlerian isoparametric submanifold. We show that the investigation of complete real analytic complex equifocal submanifolds is reduced to that of infinite dimensional anti-Kaehlerian isoparametric submanifolds. Also, we show that an infinite dimensional anti-Kaehlerian isoparametric submanifold is multi-foliated by complex spheres (or complex affine subspaces) and that the main part of the focal set of the submanifold at each point consists of some complex hyperplanes in the normal space.

Article information

Source
Tokyo J. Math., Volume 28, Number 1 (2005), 201-247.

Dates
First available in Project Euclid: 5 June 2009

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1244208289

Digital Object Identifier
doi:10.3836/tjm/1244208289

Mathematical Reviews number (MathSciNet)
MR2149633

Zentralblatt MATH identifier
1089.53037

Citation

KOIKE, Naoyuki. Complex Equifocal Submanifolds and Infinite Dimensional Anti-Kaehlerian Isoparametric Submanifolds. Tokyo J. Math. 28 (2005), no. 1, 201--247. doi:10.3836/tjm/1244208289. https://projecteuclid.org/euclid.tjm/1244208289


Export citation

References

  • J. Berndt and L. Vanhecke, Curvature adapted submanifolds, Nihonkai Math. J. 3 (1992), 177–185.
  • J. Berndt, Homogeneous hypersurfaces in hyperbolic spaces, Math. Z. 229 (1998), 589–600.
  • J. Berndt and M. Brück, Cohomogeneity one actions on hyperbolic spaces, J. Reine Angew. Math. 541 (2001), 209–235.
  • J. Berndt and H. Tamaru, Homogeneous codimension one foliations on noncompact symmetric space, J. Differential Geometry.
  • J. Berndt and H. Tamaru, Cohomogeneity one actions on noncompact symmetric spaces with a totally geodesic singular orbit, Tôhoku Math. J.
  • E. Cartan, Familles de surfaces isoparamétriques dans les espaces á courbure constante, Ann. Mat. Pura Appl. 17 (1938), 177–191.
  • U. Christ, Homogeneity of equifocal submanifolds, J. Differential Geometry 62 (2002), 1–15.
  • H. S. M. Coxeter, Discrete groups generated by reflections, Ann. of Math. 35 (1934), 588–621.
  • H. Ewert, A splitting theorem for equifocal submanifolds in simply connected compact symmetric spaces, Proc. of Amer. Math. Soc. 126 (1998), 2443–2452.
  • H. Ewert, Equifocal submanifolds in Riemannian symmetric spaces, Doctoral thesis.
  • L. Geatti, Invariant domains in the complexfication of a noncompact Riemannian symmetric space, J. of Algebra 251 (2002), 619–685.
  • J. Hahn, Isoparametric hypersurfaces in the pseudo-Riemannian space form, Math. Z. 187 (1984), 195–208.
  • J. Hahn, Isotropy representations of semi-simple symmetric spaces and homogeneous hypersurfaces, J. Math. Soc. Japan 40 (1988), 271–288.
  • E. Heintze and X. Liu, A splitting theorem for isoparametric submanifolds in Hilbert space, J. Differential Geometry 45 (1997), 319–335.
  • E. Heintze and X. Liu, Homogeneity of infinite dimensional isoparametric submanifolds, Ann. of Math. 149 (1999), 149–181.
  • E. Heintze, X. Liu and C. Olmos, Isoparametric submanifolds and a Chevalley type restriction theorem, preprint.
  • E. Heintze, R. S. Palais, C. L. Terng and G. Thorbergsson, Hyperpolar actions and k-flat homogeneous spaces, J. Reine Angew. Math. 454 (1994), 163–179.
  • E. Heintze, R. S. Palais, C. L. Terng and G. Thorbergsson, Hyperpolar actions on symmetric spaces, Geometry, topology and physics for Raoul Bott (ed. S. T. Yau), Conf. Proc. Lecture Notes Geom. Topology 4, Internat. Press, Cambridge, MA (1995), 214–245.
  • S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press, New York (1978).
  • M.C. Hughes, Complex reflection groups, Communications in Algebra 18 (1990), 3999–4029.
  • T. Kato, Perturbation theory for linear operators, Springer-Verlag New York Inc., New York (1966).
  • S. Kobayashi and K. Nomizu, Foundations of differential geometry Vol II, Interscience, New York (1963).
  • N. Koike, Tubes of nonconstant radius in symmetric spaces, Kyushu J. Math. 56 (2002), 267–291.
  • N. Koike, On proper Fredholm submanifolds in a Hilbert space arising from submanifolds in a symmetric space, Japan J. Math. 28 (2002), 61–80.
  • N. Koike, Submanifold geometries in a symmetric space of non-compact type and a pseudo-Hilbert space, Kyushu J. Math. 58 (2004), 167–202.
  • N. Koike, On focal points of submanifolds in symmetric spaces, SUT J. of Math. 39 (2003), 171–181.
  • A. Kollross, A Classification of hyperpolar and cohomogeneity one actions, Trans. Amer. Math. Soc. 354 (2001), 571–612.
  • C. King and C. L. Terng, Minimal submanifolds in path space, Global Analysis in Modern Mathematics (ed. K. Uhlenbeck), Publish or Perish (1993), 253–281.
  • Y. Maeda, S. Rosenberg and P. Tondeur, The mean curvature of gauge orbits, Global Analysis in Modern Mathematics (ed. K. Uhlenbeck), Publish or Perish (1993), 171–217.
  • M. A. Magid, Isometric immersions of Lorentz space with parallel second fundamental forms, Tsukuba J. Math. 8 (1984), 31–54.
  • M. A. Magid, Lorentzian isoparametric hypersurfaces, Pacific J. Math. 118 (1985), 165–197.
  • B. O'Neill, The fundamental equations of submersions, Michigan Math. J. 13 (1966), 459–469.
  • B. O'Neill, Semi-Riemannian Geometry, with Applications to Relativity, Academic Press, New York (1983).
  • T. Ohshima and J. Sekiguchi, The restricted root system of a semi-simple symmetric pair, Advanced Studies in Pure Mathematics 4 (1984), 433–497.
  • R. S. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299–340.
  • R. S. Palais and C. L. Terng, A general theory of canonical forms, Trans. Amer. Math. Soc. 300 (1987), 771–789.
  • R. S. Palais and C. L. Terng, Critical point theory and submanifold geometry, Lecture Notes in Math. 1353, Springer, Berlin (1988).
  • A. Z. Petrov, Einstein spaces, Pergamon Press, Hungary (1969).
  • U. Pinkall and G. Thorbergsson, Examples of infinite dimensional isoparametric submanifolds, Math. Z. 205 (1990), 279–286.
  • M. B. Stenzel, Ricci-flat metrics on the complexification of a compact rank one symmetric space, Manuscripta Math. 80 (1993), 151–163.
  • R. Szöke, Complex structures on tangent bundles of Riemannian manifolds, Math. Ann. 291 (1991), 409–428.
  • R. Szöke, Automorphisms of certain Stein manifolds, Math. Z. 219 (1995), 357–385.
  • R. Szöke, Adapted complex structures and geometric quantization, Nagoya Math. J. 154 (1999), 171–183.
  • R. Szöke, Involutive structures on the tangent bundle of symmetric spaces, Math. Ann. 319 (2001), 319–348.
  • C. L. Terng, Isoparametric submanifolds and their coxeter groups, J. Differential Geometry 21 (1985), 79–107.
  • C. L. Terng, Proper Fredholm submanifolds of Hilbert space, J. Differential Geometry 29 (1989), 9–47.
  • C. L. Terng, Polar actions on Hilbert space, J. Geom. Anal. 5 (1995), 129–150.
  • G. Thorbergsson, Isoparametric foliations and their buildings, Ann. of Math. 133 (1991), 429–446.
  • C. L. Terng and G. Thorbergsson, Submanifold geometry in symmetric spaces, J. Differential Geometry 42 (1995), 665–718.
  • C. L. Terng and G. Thorbergsson, Taut immersions into complete Riemannian manifolds, Tight and Taut submanifolds (ed. T. E. Cecil and S. S. Chern), Mathematical Sciences Research Institute Publications 32, Cambridge University Press (1997), 181–228.
  • B. Wu, Isoparametric submanifolds of hyperbolic spaces, Trans. Amer. Math. Soc. 331 (1992), 609–626.