Tokyo Journal of Mathematics

On Generalized Circuit of the Collatz Conjecture

Tomoaki MIMURO

Full-text: Open access

Abstract

The Collatz conjecture is that there exists a positive integer $n$ which satisfies $f^n(m)=1$ for any integer $m \geq 3$, where $f$ is the function on the rational number field defined by $f(m)=m/2$ if the numerator of $m$ is even and $f(m)=(3m+1)/2$ if the numerator of $m$ is odd. Let $m$ be a rational number such that $f^n(m)=m>1$. Then we show that, if $m$ has some simple sequences, then the total number of positive integer $m$ is finite, by estimating $f(m)-m$.

Article information

Source
Tokyo J. of Math. Volume 28, Number 2 (2005), 593-598.

Dates
First available in Project Euclid: 5 June 2009

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1244208209

Digital Object Identifier
doi:10.3836/tjm/1244208209

Mathematical Reviews number (MathSciNet)
MR2191068

Zentralblatt MATH identifier
1136.11018

Citation

MIMURO, Tomoaki. On Generalized Circuit of the Collatz Conjecture. Tokyo J. of Math. 28 (2005), no. 2, 593--598. doi:10.3836/tjm/1244208209. https://projecteuclid.org/euclid.tjm/1244208209


Export citation

References

  • C. Bohm and G. Sontacchi, On the existence of cycles of given length in integer sequence like $x_{n+1}=x_n/2$ if $x_n$ even, and $x_{n+1}=3x_n+1$ otherwise, Atti Accad. Naz Lincei Rend. Sci. Fis. Mat. Natur. (8) 64 (1978), 260–264.
  • R. P. Steiner, A Thorem on the Syracuse Problem, Proc. 7th Manitoba Conf. Numerical Mathematics and Computing 1977 Winnipeg (1978), 553–559.
  • T. Mimuro, On certain simple cycles of the Collatz conjecture, SUT. J. Math. 37 (2001), 79–89.
  • S. Eliahou, The $3x+1$ problem: new lower bounds on nontrivial cycle lengths, Discrete Math. 118 (1993), 45–56.
  • M. Laurent, M. Mignotte et Y. Nesterenko, Formes lin$\acute{\mbox{e}}$airies en deux logarithmes et d$\acute{\mbox{e}}$terminante d'interpolation, J. Number Theory 55 (1995), 258–321.
  • G. J. Wirsching, The Dynamical System Generated by the $3n+1$ Function, Lecture Notes in Mathematics 1681, Springer-Verlag (1998).
  • S. Wagon, The Collatz Problem, Math. Intelligencer 7 (1985) 72–76.