Tokyo Journal of Mathematics

On Generalized Circuit of the Collatz Conjecture

Tomoaki MIMURO

Full-text: Open access


The Collatz conjecture is that there exists a positive integer $n$ which satisfies $f^n(m)=1$ for any integer $m \geq 3$, where $f$ is the function on the rational number field defined by $f(m)=m/2$ if the numerator of $m$ is even and $f(m)=(3m+1)/2$ if the numerator of $m$ is odd. Let $m$ be a rational number such that $f^n(m)=m>1$. Then we show that, if $m$ has some simple sequences, then the total number of positive integer $m$ is finite, by estimating $f(m)-m$.

Article information

Tokyo J. Math., Volume 28, Number 2 (2005), 593-598.

First available in Project Euclid: 5 June 2009

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


MIMURO, Tomoaki. On Generalized Circuit of the Collatz Conjecture. Tokyo J. Math. 28 (2005), no. 2, 593--598. doi:10.3836/tjm/1244208209.

Export citation


  • C. Bohm and G. Sontacchi, On the existence of cycles of given length in integer sequence like $x_{n+1}=x_n/2$ if $x_n$ even, and $x_{n+1}=3x_n+1$ otherwise, Atti Accad. Naz Lincei Rend. Sci. Fis. Mat. Natur. (8) 64 (1978), 260–264.
  • R. P. Steiner, A Thorem on the Syracuse Problem, Proc. 7th Manitoba Conf. Numerical Mathematics and Computing 1977 Winnipeg (1978), 553–559.
  • T. Mimuro, On certain simple cycles of the Collatz conjecture, SUT. J. Math. 37 (2001), 79–89.
  • S. Eliahou, The $3x+1$ problem: new lower bounds on nontrivial cycle lengths, Discrete Math. 118 (1993), 45–56.
  • M. Laurent, M. Mignotte et Y. Nesterenko, Formes lin$\acute{\mbox{e}}$airies en deux logarithmes et d$\acute{\mbox{e}}$terminante d'interpolation, J. Number Theory 55 (1995), 258–321.
  • G. J. Wirsching, The Dynamical System Generated by the $3n+1$ Function, Lecture Notes in Mathematics 1681, Springer-Verlag (1998).
  • S. Wagon, The Collatz Problem, Math. Intelligencer 7 (1985) 72–76.