Tokyo Journal of Mathematics

$AH$-substitution and Markov Partition of a Group Automorphism on $T^d$

Fumihiko ENOMOTO

Full-text: Open access

Abstract

The existence of a Markov partition of a hyperbolic group automorphism generated by an integral matrix with determinant $\pm 1$ is established by Sinai (see [22]). After that, there are many articles to construct Markov partitions of group automorphisms generated by non-negative matrices satisfying Pisot condition by the tiling method from substitutions (see [1], [7], [16], [19], [5]). One of the purpose of this paper is to establish the construction method of a Markov partition for a group automorphism generated by a non-positive matrix satisfying ``negative Pisot'' condition. An anti-homomorphic extension of a substitution, called $AH$-substitution, is introduced in the paper. Owing to this new substitution, the Markov partition of the group automorphism from the non-positive integral matrix is constructed.

Article information

Source
Tokyo J. Math., Volume 31, Number 2 (2008), 375-398.

Dates
First available in Project Euclid: 5 February 2009

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1233844059

Digital Object Identifier
doi:10.3836/tjm/1233844059

Mathematical Reviews number (MathSciNet)
MR2477879

Zentralblatt MATH identifier
1177.37012

Citation

ENOMOTO, Fumihiko. $AH$-substitution and Markov Partition of a Group Automorphism on $T^d$. Tokyo J. Math. 31 (2008), no. 2, 375--398. doi:10.3836/tjm/1233844059. https://projecteuclid.org/euclid.tjm/1233844059


Export citation

References

  • R. L. Adler and B. Weiss, Similarity of Automorphisms of the Torus, Mem. Amer. Math. Soc. 98 (1970).
  • S. Akiyama, Self affine tiling and Pisot numeration system, Number Theory and its Applications, ed. by K. Gyory and S. Kanemitsu, Kluwer (1999), 7–17.
  • S. Akiyama, Cubic Pisot units with finite beta expansions, Algebraic Number Theory and Diophantine Analysis, ed. by F. Halter-Koch and R. F. Tichy, de Gruyter (2000), 11–26.
  • S. Akiyama and T. Sadahiro, A self-similar tiling generated by the minimal Pisot number, Acta Math. Infor. Univ. Ostraviensis, 6 (1998), 9–26.
  • P. Arnoux and S. Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin, 8 (2001), 181–207.
  • P. Arnoux, M. Furukado, E. Harriss and S. Ito, Algebraic numbers and automorphism of free groups, (preprint).
  • T. Bedford, Generating special Markov partitions for hyperbolic toral automorphisms using fractals, Ergod. Th. Dynam. Sys., 6 (1986), 325–333.
  • V. Cantrini and A. Siegel, Geometric representation of substitutions of Pisot type, Trans. Amer. Math. Soc. Comput., 353 (2001), 5121–5144.
  • H. Ei and S. Ito, Tilings from some non-irreducible, Pisot substitutions, Discrete Math. Theor. Comput. Sci., 7 (2005), 81–123.
  • H. Ei, S. Ito and H. Rao, Atomic surfaces, tilings and coincidences II: Reducible case, to appear in Annal. Institut Fourier, (Grenoble).
  • D. J. Feng, M. Furukado and J. Wu, Pisot substitutions and the Hausdorff dimension of boundaries of Atomic surfaces, Tsukuba J. Math., 30 (2006), 195–223.
  • S. Ito, A construction of transversal flows for maximal Markov automorphism, Tokyo J. Math., 1 (1978), 305–324.
  • S. Ito, J. Fujii, H. Higashino and S. Yasutomi, On simultaneous approximation to $( \alpha, \alpha^2)$ with $ \alpha^3 + k \alpha -1 = 0 $, J. Number Theory, 99 (2003), 255–283.%
  • S. Ito and H. Rao, Purely periodic $\beta$-expansions with Pisot unit base, Proc. Amer. Math. Soc., 133 (2005), 953–964.
  • S. Ito and H. Rao, Atomic surfaces, tilings and coincidences I: Irreducible case, Israel J. Math., 153 (2006), 129–156.
  • S. Ito and M. Ohtsuki, Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms, Tokyo J. Math., 16 (1993), 441–472.
  • R. Kenyon, Self-replicating tilings, in, Symbolic dynamics and its applications, Contemporary mathematics series. 135 (P.Walters, ed.) (1992), Amer. Math. Soc., Providence, RI.
  • D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press (1995), Cambridge.
  • B. Praggastis, Numeration systems and Markov partitions from self-similar tilings, Tran. Amer. Math. Soc., 351 (1999), 3315–3349.
  • M. Queffélec, Substitution dynamical systems–-spectral analysis, Lecture Notes in Math. 1294 (1987), Springer.
  • Y. Sano, P. Arnoux and S. Ito, Higher dimensional extensions of substitutions and their dual maps, J. Anal. Math., 83 (2001), 183–206.
  • Ya. G. Sinai, Construction of Markov partitions, Funct. Anal. Appl., 2 (1968), 245–253.
  • W. P. Thurston, Groups, tilings and finite state automata, In AMS Colloquium lecture notes (1989), 183–206.