Tokyo Journal of Mathematics

The Turaev-Viro Invariants of All Orientable Closed Seifert Fibered Manifolds

Taiji TANIGUCHI

Full-text: Open access

Abstract

The Turaev-Viro invariants are topological invariants of closed 3-manifolds. In this paper, we give a formula of the Turaev-Viro invariants of all orientable closed Seifert fibered manifolds. Our formula is based on a new construction of special spines of all orientable closed Seifert fibered manifolds and the``gluing lemma'' of topological quantum field theory. By using our formula, we get sufficient conditions of coincidence of the Turaev-Viro invariants of orientable closed Seifert fibered manifolds.

Article information

Source
Tokyo J. Math., Volume 30, Number 2 (2007), 497-522.

Dates
First available in Project Euclid: 4 February 2008

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1202136692

Digital Object Identifier
doi:10.3836/tjm/1202136692

Mathematical Reviews number (MathSciNet)
MR2376525

Zentralblatt MATH identifier
1148.57021

Citation

TANIGUCHI, Taiji. The Turaev-Viro Invariants of All Orientable Closed Seifert Fibered Manifolds. Tokyo J. Math. 30 (2007), no. 2, 497--522. doi:10.3836/tjm/1202136692. https://projecteuclid.org/euclid.tjm/1202136692


Export citation

References

  • M. F. Atiyah, Topological quantum field theories, Publ. Math. I.H.E.S., 68 (1989), 175–186.
  • B. G. Casler, An imbedding theorem for connected 3-manioflds with boundary, Proc. Amer. Math. Soc., 16 (1992), 559–566.
  • L. H. Kauffman, Map coloring $q$-deformed spin networks and Turaev-Viro invariants for 3-manifolds, International J. Modern Physics, 6 (1992), 1765–1794.
  • L. H. Kauffman and S. L. Lins, Temperley-Lieb Recoupling Theory and Invariant of $3$-manifolds, Princeton University Press, 1994.
  • S. V. Matveev, Algorithmic Topology and Classification of $3$-manifolds, Springer, 2003.
  • S. V. Matveev, Transformations of special spines and the Zeeman conjecture, Math USSR Izvestia, 31 (1988), 423–434.
  • Peter Orlik, Seifert Manifolds, Lecture Notes in Mathematics 291, Springer-Verlag, 1972.
  • R. Piergallini, Standard moves of the standard polyhedra and spines, Rend. Circ. Mat. Palermo, 37–38 (1988), 391–414.
  • S. Piunikhin, Turaev-Viro and Kauffman-Lins invariants for 3-manifolds coincide, J. Knot Theory and Its Ramifications, 1 (1992), 105–135.
  • S. K. Hansen and T. Takata, Reshetikhin-Turaev invariants of Seifert 3-manifolds for classical simple Lie algebras, J. Knot Theory Ramifications, 13 (2004), 617–668.
  • T. Taniguchi, K. Tsuboi and M. Yamashita, Systematic singular triangulation of all orientable Seifert manifolds, Tokyo J. Math., 28 (2005), 539–561.
  • V. G. Turaev, Quantum Invariants of Knots and 3-manifolds, Walter de Gruyter, Berlin, 1994.
  • V. G. Turaev and O. Y. Viro, State sum invariants of 3,-,manifolds and quantum $6j$-symbols, Topology, 31 (1992), 865–902.
  • D. N. Yetter, Topological quantum field theories associated to finite groups and crossed $G$-sets, J. Knot Theory Ramifications, 1 (1992), 1–20.