Tokyo Journal of Mathematics

Inductive Construction of Nilpotent Modules of Quantum Groups at Roots of Unity

Yuuki ABE

Full-text: Open access

Abstract

The purpose of this paper is to prove that we can inductively construct all finite-dimensional irreducible nilpotent modules of type 1 by using the Schnizer homomorphisms for quantum algebras at roots of unity of type $A_n$, $B_n$, $C_n$, $D_n$, or $G_2$.

Article information

Source
Tokyo J. Math., Volume 30, Number 2 (2007), 351-371.

Dates
First available in Project Euclid: 4 February 2008

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1202136681

Digital Object Identifier
doi:10.3836/tjm/1202136681

Mathematical Reviews number (MathSciNet)
MR2376514

Zentralblatt MATH identifier
1149.17006

Citation

ABE, Yuuki. Inductive Construction of Nilpotent Modules of Quantum Groups at Roots of Unity. Tokyo J. Math. 30 (2007), no. 2, 351--371. doi:10.3836/tjm/1202136681. https://projecteuclid.org/euclid.tjm/1202136681


Export citation

References

  • S. Arkhipov, R. Bezrukavnikov, and V. Ginzburg, Quantum groups, the loop Grassmannian, and the Springer resolution, JAMS, 17 (2004), 595–678.
  • Y. Abe and T. Nakashima, Nilpotent representations of classical quantum groups at roots of unity, J. Math. Phys., 46 (2005), no. 12, 113505 1–19.
  • V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994.
  • E. Date, M. Jimbo, K. Miki and T. Miwa, Cyclic Representations of $U_q({\mathfrak s}{\mathfrak l}(n+1,\bbC))$ at $q^N=1$, Publ. RIMS, Kyoto Univ., 27 (1991), 366–437.
  • C. De Concini and V. G. Kac, Representations of Quantum Groups at Roots of $1$, Actes du Colloque en l'honneur de Jacques Diximier, edited by A. Connes, M. Duflo, A. Joseph and R. Rentschler (Prog. Math. Birkhauser), 92 (1990), 471–506.
  • J. C. Jantzen, Lectures on Quantum Groups, GSM. vol. 6, 1996.
  • G. Lusztig, Modular representations and quantum groups, Contemp. Math., 82 (1989), 59–77.
  • G. Lusztig, Finite-dimensional Hopf algebras arising from quantized unuversal enveloping algebra, J. Amer. Math. Soc., 3 (1990), no. 1, 257–296.
  • T. Nakashima, Irreducible modules of finite dimensional quantum algebras of type A at roots of unity, J. Math. Phys., 43, (2002) no. 4, 2000–2014.
  • W. A. Schnizer, Roots of unity: Representations for symplectic and orthogonal quantum groups, J. Math. Phys., 34 (1993), 4340–4363.
  • W. A. Schnizer, Roots of unity: Representations of Quantum Group, Commun. Math. Phys., 163 (1994), 293–306.
  • T. Tanisaki, Character formulas of Kazhdan-Lusztig type, Fields Institute Communications, 40 (2004), 147–176.