Tokyo Journal of Mathematics

Partial Sums of Multiple Zeta Value Series

Chizuru SEKINE

Full-text: Open access

Article information

Source
Tokyo J. Math., Volume 29, Number 2 (2006), 465-474.

Dates
First available in Project Euclid: 1 February 2007

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1170348179

Digital Object Identifier
doi:10.3836/tjm/1170348179

Mathematical Reviews number (MathSciNet)
MR2284984

Zentralblatt MATH identifier
1215.11089

Citation

SEKINE, Chizuru. Partial Sums of Multiple Zeta Value Series. Tokyo J. Math. 29 (2006), no. 2, 465--474. doi:10.3836/tjm/1170348179. https://projecteuclid.org/euclid.tjm/1170348179


Export citation

References

  • M. Bayat, A generalization of Wolstenholme's Theorem, Amer. Math. Monthly, 104 (1997), 557–560.
  • A. Eswarathasan and E. Levine, P-Integral harmonic sums, Discrete Math., 91 (1991), 249–257.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Oxford Univ. Press, London (1979).
  • K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Second Edition, Graduate Texts in Mathematics, Vol. 84, Springer, New York.
  • B. C. Kellner, On irregular prime power divisors of the Bernoulli numbers, available at xxx.lanl. gov/abs/math.NT/0409223.
  • J. Zhao, Multiple Harmonic Sums I: Generalizations of Wolstenholme's Theorem, available at xxx.lanl. gov/abs/math.NT/0301252.
  • J. Zhao, Multiple Harmonic Sums II: Finiteness of p-Divisible Sets, available at xxx.lanl.gov/ abs/math.NT/0303043.