Tokyo Journal of Mathematics

Groups Defined by Extended Affine Lie Algebras with Nullity $2$


Full-text: Open access


After certain completions, we define adjoint groups of extended affine Lie algebras with nullity $2$. Then we show that such groups have Tits systems with affine Weyl groups (Part I). This idea allows us to consider linear groups over some completed quantum tori. By the same argument, we can prove that these linear groups also have Tits systems with affine Weyl groups. Using this fact we will study their universal central extensions as well as associated $K_1$-groups and $K_2$-groups (Part II). We will discuss some relationship among our groups constructed here (Part III).

Article information

Tokyo J. Math., Volume 29, Number 2 (2006), 347-383.

First available in Project Euclid: 1 February 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 17B65: Infinite-dimensional Lie (super)algebras [See also 22E65]
Secondary: 20E42: Groups with a $BN$-pair; buildings [See also 51E24]


MORITA, Jun; SAKAGUCHI, Hideyuki. Groups Defined by Extended Affine Lie Algebras with Nullity $2$. Tokyo J. Math. 29 (2006), no. 2, 347--383. doi:10.3836/tjm/1170348172.

Export citation


  • E. Abe and J. Morita, Some Tits systems with affine Weyl groups in Chevalley groups over Dedekind domains, J. Algebra 115 (1988), 450–465.
  • B. N. Alison, S. Azam, S. Berman, Y. Gao and A. Pianzola, Extended affine Lie algebras and their root systems, Memoirs Amer. Math. Soc. 126, vol. 603 (1997).
  • S. Berman, Y. Gao and I. Kryliouk, Quantum tori and the structure of elliptic quasi-simple Lie algebras, J. Funct. Anal. 135 (1996), 339–389.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. IV–VI, Hermann, Paris (1968).
  • M. J. Dunwoody, $K_2$ of a Euclidean ring, J. Pure and Appl. Algebra 7 (1976), 53–58.
  • H. Garland, Arithmetic theory in loop groups, Inst. Haute Etudes Sci. Publ. Math. 52 (1980), 181–321.
  • N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of $p$-adic Chevalley groups, Inst. Haute Etudes Sci. Publ. Math. 25 (1965), 5–48.
  • V. G. Kac, Infinite dimensional Lie algebras, Progress in Math. 44, Birkhäuser, Boston (1983).
  • J. Milnor, Introduction to algebraic $K$-theory,” Ann. of Math. Studies 72, Princeton University Press, Princeton (1971).
  • R. V. Moody and A. Pianzola, Lie algebras with triangular decompositions, John Wiley & Sons, New York (1995).
  • R. V. Moody and T. Yokonuma, Root systems and Cartan matrices, Canad. J. Math. 34 (1982), 63–79.
  • J. Morita, Tits' systems in Chevalley groups over Laurent polynomial rings, Tsukuba J. Math. 3 (1979), 41–51.
  • J. Morita, Coverings of generalized Chevalley groups associated with affine Lie algebras, Tsukuba J. Math. 6 (1982), 1–8.
  • J. Morita and U. Rehmann, A Matsumoto-type theorem for Kac-Moody groups, T\^ ohoku Math. J. 42 (1990), 537–560.
  • J. Morita and U. Rehmann, Symplectic $K_2$ of Laurent polynomials, associated Kac-Moody groups and Witt rings, Math. Z. 206 (1991), 57–66.
  • J. Morita and Y. Yoshii, Universal central extensions of Chevalley algebras over Laurent polynomial rings and GIM Lie algebras, Proc. Japan Acad. 61 Ser. A (1985), 179–181.
  • J. Morita and Y. Yoshii, Locally extended affine Lie algebras, J. Algebra 301 (2006), 59–81.
  • E. Neher, Extended affine Lie algebras, C. R. Math. Rep. Acad. Sci. Canada 26 (2004), 90–96.
  • K. Saito and D. Yoshii, Extended affine root systems IV. Simply-laced elliptic Lie algebras, Publ. Res. Inst. Math. Sci. 36 (2000), 385–421.
  • H. Sakaguchi, Linear groups over certain completed quantum tori, Master thesis (in Japanese), University of Tsukuba (2004).
  • R. Steinberg, Lectures on Chevalley groups, Yale Univ. Lecture Notes, New Haven CT (1968).