Tokyo Journal of Mathematics

Mixed Multiplicities of Modules over Noetherian Local Rings

Nguyên Tiên Mạnh and Duong Quôc Việt

Full-text: Open access

Abstract

The relationship between mixed multiplicities of arbitrary ideals in local rings and Hilbert-Samuel multiplicities was solved by Viêt in [8]. In this paper, we extend some important results of Viêt in [8, 9, 10, 11] to modules. We build the concept of (FC)-sequences of modules and use this notion to study reductions of ideals with respect to modules, mixed multiplicities of modules and multiplicities of Rees modules.

Article information

Source
Tokyo J. Math., Volume 29, Number 2 (2006), 325-345.

Dates
First available in Project Euclid: 1 February 2007

Permanent link to this document
https://projecteuclid.org/euclid.tjm/1170348171

Digital Object Identifier
doi:10.3836/tjm/1170348171

Mathematical Reviews number (MathSciNet)
MR2284976

Zentralblatt MATH identifier
1126.13003

Citation

Mạnh, Nguyên Tiên; Việt, Duong Quôc. Mixed Multiplicities of Modules over Noetherian Local Rings. Tokyo J. Math. 29 (2006), no. 2, 325--345. doi:10.3836/tjm/1170348171. https://projecteuclid.org/euclid.tjm/1170348171


Export citation

References

  • A. Auslander and D. Buchbaum, Codimention and multiplicity, Ann. Math. 68 (1958).
  • P. B. Bhattacharya, The Hilbert function of two ideals, Proc. Cambridge. Philos. Soc. 53 (1957), 568–575.
  • D. Rees, Generalizations of reductions and mixed multiplicities, J. London. Math. Soc. 29 (1984), 397–414.
  • B. Teisier, Cycles èvanescents, sections planes, et conditions de Whitney, Singularities à Cargése (1972). Astérisque, 7–8 (1973), 285–362.
  • J. K. Verma, Rees algebras and mixed multiplicities, Proc. Amer. Math. Soc. 104 (1988), 1036–1044.
  • J. K. Verma, Rees algebras with minimal multiplicity, Comm. Algebra. 17 (12) (1988), 2999–3024.
  • J. K. Verma, Multi-graded Rees algebras and mixed multiplicities, J. Pure Appl. Algebra. 77 (1992), 219–228.
  • D. Q. Vi\dêt, Mixed multiplicities of arbitrary ideals in local rings, Comm. Algebra. 28 (8) (2000), 3803–3821.
  • D. Q. Vi\dêt, On some properties of $($FC$)$-sequences of ideals in local rings, Proc. Amer. Math. Soc. 131 (2003), 45–53.
  • D. Q. Vi\dêt, Sequences determining mixed mutiplicities and reductions of ideals, Comm. Algebra. 31 (10) (2003), 5047–5069.
  • D. Q. Vi\dêt, Reductions and mixed multiplicities of ideals, Comm. Algebra. 32 (11) (2004), 4159–4178.