Abstract
We study some conditions that the Iwasawa $\lambda$-, $\mu$-invariants of the the cyclotomic $\mathbb{Z}_{2}$-extension of $k = \mathbb{Q}(\sqrt{pq})$ with $p \equiv 7 \pmod{8}, q \equiv 1 \pmod{8}, (\frac{p}{q}) = -1$ are zero.
Citation
Yoshinori Nishino. "On the Iwasawa Invariants of the Cyclotomic $\mathbb{Z}_{2}$-Extensions of Certain Real Quadratic Fields." Tokyo J. Math. 29 (1) 239 - 245, June 2006. https://doi.org/10.3836/tjm/1166661877
Information