Tbilisi Mathematical Journal

New inequalities for $n$-time differentiable functions

Çetin Yildiz and M. Emin Özdemir

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this paper, we obtain several inequalities of Ostrowski type that the absolute values of n-time differentiable functions are convex. Also, some applications to special means of real numbers are provided.

Article information

Tbilisi Math. J., Volume 12, Issue 2 (2019), 1-15.

Received: 20 December 2016
Accepted: 10 February 2019
First available in Project Euclid: 21 June 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Primary: 26D15: Inequalities for sums, series and integrals
Secondary: 26D10: Inequalities involving derivatives and differential and integral operators

Hermite-Hadamard inequality Ostrowski inequality convex functions


Yildiz, Çetin; Özdemir, M. Emin. New inequalities for $n$-time differentiable functions. Tbilisi Math. J. 12 (2019), no. 2, 1--15. doi:10.32513/tbilisi/1561082563. https://projecteuclid.org/euclid.tbilisi/1561082563

Export citation


  • M. W. Alomari, M. E. Özdemis and H. Kavurmaci, On companion of Ostrowski inequality for mappings whose first derivatives absolute value are convex with applications, Misc. Math. Not., 13 (2) (2012), 233-248.
  • P. Cerone, S. S. Dragomir and J. Roumeliotis, Some Ostrowski type inequalities for $n-$time differentiable mappings and applications, Demonstratio Math., 32 (4) (1999), 697-712.. Not., 13 (2) (2012), 233-248.
  • L. Dedić, M. Matić and J. Pečarić, On some generalisations of Ostrowski inequality for Lipschitz functions and functions of bounded variation, Math. Ineq. & Appl., 3 (1) (2000), 1-14.
  • S. S. Dragomir, On the Ostrowski's integral inequality for mappings with bounded variation and applications, Math. Ineq. & Appl., in press.
  • S. S. Dragomir, Ostrowski's inequality for monotonous mappings and applications, J. KSIAM, 3 (1) (1999), 127-135.
  • S. S. Dragomir, The Ostrowski's integral inequality for Lipschitzian mappings and applications, Comp. and Math. with Appl., 38 (1999), 33-37.
  • S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in $Lp$ norm and applications to some numerical quadrature rules, Indian J. of Math., 40 (3) (1998), 245-304.
  • S. S. Dragomir and S. Wang, An inequality of Ostrowski-Grüss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Computers Math. Applic., 33 (1997), 15-22.
  • S. S. Dragomir and S. Wang, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and to some numerical quadrature rules, Appl. Math. Lett., 11 (1998), 105-109.
  • H. Kavurmaci, M. E. Özdemir and M. Avci, New Ostrowski type inequalities for $m-$convex functionsand applications, Hacettepe Jour. Math. Stat. 40 (2) (201), 135-145.
  • M. E. Özdemir, A. O. Akdemir and E. Set, On the Ostrowski-Grüss type inequality for twice differentiable functions, Hacettepe Jour. Math. Stat. 41 (5) (2012), 651-655.
  • M. E. Özdemir and Ç. Yildiz, New Ostrowski type inequalities for geometrically convex functions, Inter. Jour. Mod. Math. Sci., 8 (1) (2013), 27-35.
  • M. E. Özdemir, H. Kavurmaci and E. Set, Ostrowski's type inequalities for $\left( \alpha ,m\right) -$convex functions, Kyungpook Math. Jour. 50 (3) (2010), 371-378.
  • A. Ostrowski, Uber die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel, 10 (1938), 226-227.
  • C. E. M. Pearce, J. Pečarić, N. Ujević and S. Varo Šanec, Generalisations of some inequalities of Ostrowski-Grüss type, Math. Ineq. & Appl., 3 (1) (2000), 25-34.
  • E. Set, M. E. Özdemir and M. Z. Sarikaya, New inequalities of Ostrowski's type for $s-$convex functions in the second sence with applications, Facta Universitatis Ser. Math. Inform., 27 (1) (2012), 67-82.
  • E. Set, M. Z. Sarikaya and M. E. Özdemir, Some Ostrowski's type inequalities for functions whose derivatives are $s-$convex in the second sense and applications, Demonst. Math. In press.
  • A. Sofo and S. S. Dragomir, An inequality of Ostrowski type for twice differentiable mappings in terms of the $Lp$ norm and applications, Soochow J. of Math., 27(1) (2001), 97-111.