Tbilisi Mathematical Journal

Certain results on para-Kenmotsu manifolds equipped with $M$-projective curvature tensor

Abhishek Singh and Shyam Kishor

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The purpose of the article is to study the certain results on para-Kenmotsu manifolds equipped with $M$-projective curvature tensor. Here we investigate para-Kenmotsu manifolds satisfying some curvature conditions $\widetilde{M}\cdot R=0,$ $\widetilde{M}\cdot Q=0$ and $Q\cdot \widetilde{M}=0,$ where $R$, $Q$ and $\widetilde{M}$ respectively denote the Riemannian curvature tensor, Ricci operator and $M$-projective curvature tensor.

Article information

Tbilisi Math. J., Volume 11, Issue 3 (2018), 125-132.

Received: 8 April 2018
Accepted: 2 May 2018
First available in Project Euclid: 3 October 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Primary: 53C15: General geometric structures on manifolds (almost complex, almost product structures, etc.)
Secondary: 53C25: Special Riemannian manifolds (Einstein, Sasakian, etc.) 53C26: Hyper-Kähler and quaternionic Kähler geometry, "special" geometry

para-Kenmotsu manifold Ricci operator Riemannian curvature tensor Riemannian manifold


Singh, Abhishek; Kishor, Shyam. Certain results on para-Kenmotsu manifolds equipped with $M$-projective curvature tensor. Tbilisi Math. J. 11 (2018), no. 3, 125--132. doi:10.32513/tbilisi/1538532031. https://projecteuclid.org/euclid.tbilisi/1538532031

Export citation


  • T. Adati and K. Matsumoto, On conformally recurrent and conformally symmetric $P$-Sasakian manifolds, TRU Math., 13 (1977), 25-32.
  • A. M. Blaga, $\eta $-Ricci solitons on para-Kenmotsu manifolds, Balkan Journal of Geometry and Its Applications, 20(1) (2015), 1-13.
  • D. E. Blair, Two remarks on contact metric structures, Tohoku Math. J., 29 (1977), 319-324.
  • A. L. Besse, Einstein manifolds, Springer-verlag, Berlin-Heidelberg (1987).
  • S. K. Chaubey and R. H. Ojha, On the $M$ -projective curvature tensor on Kenmotsu manifolds, Diff. Goem. Dynam. Syst., 12 (2010), 52-60.
  • P. Dacko and Z. Olszak, On weakly para-cosymplectic manifolds of dimension 3. J. Geom. Phys. 57 (2007), 561-570.
  • S. Ivanov, D. Vassilev and S. Zamkovoy, Conformal paracontact curvature and the local flatness theorem. Geom. Dedicata 144 (2010), 79-100.
  • U. C. De and S. Samui, $E$-Bochner curvature tensor on $(k, \mu )$-contact metric manifolds, Int. Electron. J. Geom., 7(1) (2014), 143-153.
  • U. C. De and P. Pal, On generalized $M$ -projectively recurrent manifolds, Ann. Univ. Paedagog. Crac. Stud. Math., 13 (2014), 77-101.
  • U. C. De and S. Mallick, $m$-Projective curvature tensor on $N(k)$-quasi-Einstein manifolds, Diff. Geom. Dynam. Syst., 16 (2014), 98-112.
  • U. C. De and A. Haseeb, On generalized Sasakian-space-forms with $M$-projective curvature tensor, Adv. Pure Appl. Math., 9(1) ( 2018), 67–73.
  • R. Deszcz, L. Verstraelen and S. Yaprak, Warped products realizing a certain conditions of pseudosymmetry type imposed on the Weyl curvature tensor, Chin. J. Math. 22 (1994), 139-157.
  • A. Ghosh, T. Koufogiorgos and R. Sharma, Conformally flat contact metric manifolds, J. Geom., 70 (2001), 66-76.
  • K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93-103.
  • S. Kaneyuki and F. L. Williams, Almost paracontact and parahodge structure on manifolds, Nagoya Math. J., 99 (1985), 173-187.
  • P. Majhi and G. Ghosh, On a classification of Para-Sasakian manifolds, Facta Universitatis, Ser. Math. Inform., 32(5) (2017), 781–788.
  • R. H. Ojha, A note on the $M$-projective curvature tensor, Indian J. Pure Appl. Math., 8 (12) (1975), 1531-1534.
  • R. H. Ojha, $M$-projectively flat Sasakian manifolds, Indian J. Pure Appl. Math., 17(4) (1986), 481-484.
  • G. P. Pokhariyal and R. S. Mishra, Curvature tensor and their relativistic significance II, Yokohama Math. J., 19 (1971), 97-103.
  • K. L. Sai Prasad and T. Satyanarayan, On para-Kenmotsu manifold, Int. J. Pure Appl. Math., 90(1) (2014), 35-41.
  • B. B. Sinha and K. L. Prasad, A class of Almost paracontact metric manifold, Bull. Calcutta Math, Soc., 87 (1995), 307-312.
  • I. Sato, On a structure similar to the almost contact structure I, Tensor N. S., 30 (1976), 219-224.
  • T. Takahashi, Sasakian manifold with pseudo-Riemannian metric, Thoku Math. J., 21(2) (1969), 644-653.
  • K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics, World Scientific Publishing Co., Singapore 3 (1984).
  • J. Welyczko, Slant curves in $3$ -dimensional normal almost paracontact metric manifolds, Mediter, J. Math., (2013).
  • S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Glob. Anal. Geom. 36(1) (2009), 37-60.