Tbilisi Mathematical Journal

Multipliers and convolution spaces for the Hankel space and its dual on the half space $[0,+\infty [ \times\mathbb{R}^n$

C. Baccar

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We define the Hankel space $\mathbb{H}_\mu(]0,+\infty[\times\mathbb{R}^n)$; $\mu\geqslant -\frac{1}{2}$, and its dual $\mathbb{H'}_\mu(]0,+\infty[\times\mathbb{R}^n)$. First, we characterize the space $\mathscr{M}_\mu([0,+\infty[\times\mathbb{R}^n)$ of multipliers of the space $\mathbb{H}_\mu(]0,+\infty[\times\mathbb{R}^n)$. Next, we define a subspace $\mathbb{O}'_\mu([0,+\infty[\times \mathbb{R}^n)$ of the dual $\mathbb{H'}_\mu(]0,+\infty[\times\mathbb{R}^n)$ which permits to define and study a convolution product $\ast$ on $\mathbb{H'}_\mu(]0,+\infty[\times\mathbb{R}^n)$ and we give nice properties.

Article information

Source
Tbilisi Math. J., Volume 9, Issue 1 (2016), 197-220.

Dates
Received: 2 August 2015
Accepted: 10 January 2016
First available in Project Euclid: 12 June 2018

Permanent link to this document
https://projecteuclid.org/euclid.tbilisi/1528769046

Digital Object Identifier
doi:10.1515/tmj-2016-0009

Mathematical Reviews number (MathSciNet)
MR3486225

Zentralblatt MATH identifier
1337.42008

Subjects
Primary: 42B10: Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
Secondary: 42B15: Multipliers

Keywords
Hankel space Fourier-Hankel transform multipliers convolution product

Citation

Baccar, C. Multipliers and convolution spaces for the Hankel space and its dual on the half space $[0,+\infty [ \times\mathbb{R}^n$. Tbilisi Math. J. 9 (2016), no. 1, 197--220. doi:10.1515/tmj-2016-0009. https://projecteuclid.org/euclid.tbilisi/1528769046


Export citation