Tbilisi Mathematical Journal

On the Differentiability of Quaternion Functions

Omar Dzagnidze

Full-text: Open access

Abstract

Motivated by the general problem of extending the classical theory of holomorphic functions of a complex variable to the case of quaternion functions, we give a notion of an $\mathbb{H}$-derivative for functions of one quaternion variable. We show that the elementary quaternion functions introduced by Hamilton as well as the quaternion logarithm function possess such a derivative. We conclude by establishing rules for calculating $\mathbb{H}$-derivatives.

Article information

Source
Tbilisi Math. J., Volume 5, Issue 1 (2012), 1-15.

Dates
Received: 3 May 2011
Revised: 27 March 2012
Accepted: 2 April 2012
First available in Project Euclid: 12 June 2018

Permanent link to this document
https://projecteuclid.org/euclid.tbilisi/1528768885

Mathematical Reviews number (MathSciNet)
MR2950182

Zentralblatt MATH identifier
1280.30022

Subjects
Primary: 30G35: Functions of hypercomplex variables and generalized variables
Secondary: 30A05: Monogenic properties of complex functions (including polygenic and areolar monogenic functions) 30B10: Power series (including lacunary series)

Keywords
Quaternion $\mathbb{H}$-derivative elementary quaternion functions

Citation

Dzagnidze, Omar. On the Differentiability of Quaternion Functions. Tbilisi Math. J. 5 (2012), no. 1, 1--15. https://projecteuclid.org/euclid.tbilisi/1528768885


Export citation

References

  • N. V. Aleksandrova. Formation of the basic concepts of the vector calculus (Russian). Istor.-Mat. Issled., No. 26, 205–235, 1982.
  • V. I. Arnold. The geometry of spherical curves and quaternion algebra (Russian). Uspekhi Mat. Nauk, 50(1(301)):3–68, 1995; translation in Russian Math. Surveys, 50(1):1–68, 1995.
  • V. N. Branets and I. P. Shmyglevskiĭ. The use of quaternions in problems of rigid body orientation (Russian). Mechanics of Space Flight Series. Izdat. Nauka, Moscow, 1973.
  • J. J. Buff. Characterization of an analytic function of a quaternion variable. Pi Mu Epsilon J., 5:387–392, 1973.
  • M. J. Crowe. A history of vector analysis. The evolution of the idea of a vectorial system. University of Notre Dame Press, Notre Dame, Ind.-London, 1967.
  • P. A. M. Dirac. Application of quaternions to Lorentz transformations. Proc. Roy. Irish Acad. Sect. A., 50:261–270, 1945.
  • M. Eichler. Allgemeine Integration einiger partieller Differentialgleichungen der mathematischen Physik durch Quaternionenfunktionen. Comment. Math. Helv., 12:212–224, 1940.
  • R. Fueter. Die Funktionentheorie der Differentialgleichungen $\Delta u=0$ und $\Delta\Delta u=0$ mit vier reellen Variablen. Comment. Math. Helv., 7(1):307–330, 1935.
  • R. Fueter. Die Funktionentheorie der Dirac'schen Differentialgleichungen. Comment. Math. Helv., 16:19–28, 1944.
  • K. Gürlebeck and W. Spröß ig. Quaternionic analysis and elliptic boundary value problems. Mathematical Research, 56. Akademie-Verlag, Berlin, 1989.
  • G. Gentili and D.C. Struppa. A new theory of regular functions of a quaternionic variable. Adv. Math. 216:279–301, 2007.
  • Z. Haddad. Two remarks on the quaternions. Pi Mu Epsilon J., 7:221–231, 1981.
  • F. Hausdorff. Zur Theorie der Systeme complexer Zahlen. Leipz. Ber., 52:43–61, 1900.
  • S. Hoshi. On some theories of quaternion functions. Mem. Fac. Engrg. Miyazaki Univ., No. 3, 1962.
  • I. L. Kantor and A. S. Solodovnikov. Hypercomplex numbers (Russian). Izdat. Nauka, Moscow, 1973.
  • V. V. Kravchenko and M. V. Shapiro. Integral representations for spatial models of mathematical physics. Pitman Research Notes in Mathematics Series, 351. Longman, Harlow, 1996.
  • N. M. Kryloff. Sur les quaternions de W. R. Hamilton et la notion de la monogeneite. C. R. (Doklady) Acad. Sci. URSS (N. S.) 55:799–800, 1947.
  • Yu. V. Linnik. Quaternions and Cayley numbers; some applications of the arithmetic of quaternions (Russian). Uspehi Matem. Nauk (N.S.), 4(5(33)):49–98, 1949.
  • H. Loomann. Uber die Cauchy-Riemannschen Differentialgleichungen. Gott. Nachr. 1923, 97–108.
  • S. Lugojan. Quaternionic derivability. An. Univ. Timişoara Ser. Ştiinţ. Mat. 29(2-3):175–190, 1991.
  • J. E. Marsden. Elementary classical analysis. W. H. Freeman and Co., San Francisco, 1974.
  • J. Arias de Reyna Martinez. Functions derivable en quaternions (Spanish). Gac. Mat. (Madrid) (1) 27(5-6):127–129, 1975.
  • D. Menchoff. Sur la generalisation des conditions de Cauchy-Riemann. Fundamenta Math. 25:59–97, 1935.
  • A. S. Meĭ lihzon. On the assignment of monogeneity to quaternions (Russian). Doklady Akad. Nauk SSSR (N.S.), 59:431–434, 1948.
  • Ph. M. Morse and H. Feshbach. Methods of theoretical physics. 2 volumes. McGraw-Hill Book Co., Inc., New York–Toronto–London, 1953.
  • M. Peters. Ternäre und quaternäre quadratische Formen und Quaternionen-Algebren. Acta Arith., 15:329–365, 1968/1969.
  • A. Rose. On the use of a complex (quaternion) velocity potential in three dimensions. Comment. Math. Helv., 24:135–148, 1950.
  • S. Saks. Theory of the integral. 2. ed. Warzawa, Lwow, Monografie Matematyczne, Tom VII. New York, G. E. Stechert, 1937.
  • A. Sudbery. Quaternionic analysis. Math. Proc. Cambridge Philos. Soc., 85(2):199–225, 1979.
  • O. Taussky. Sums of squares. Amer. Math. Monthly, 77:805–830, 1970.
  • G. Tolstov. Sur les fonctions bornées vérifiant les conditions de Cauchy–Riemann. Rec. Math. [Mat. Sbornik] N.S., 10(52):79–85, 1942.
  • N. N. Vakhania. Random vectors with values in quaternion Hilbert spaces (Russian). Teor. Veroyatnost. i Primenen., 43(1):18–40, 1998; translation in Theory Probab. Appl., 43(1):99–115, 1999.