Tbilisi Mathematical Journal

On fractional order Mellin transform and some of its properties

Maryam Omran and Adem Kiliçman

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this work, we introduce fractional Mellin transform of order $ \alpha, \ \ 0 \lt \alpha \leq1$ on a function which belongs to the Lizorkin space. Further, some properties and applications of fractional Mellin transform are given.

Article information

Tbilisi Math. J., Volume 10, Issue 1 (2017), 315-324.

Received: 9 March 2016
Accepted: 8 April 2016
First available in Project Euclid: 26 May 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 26A33: Fractional derivatives and integrals
Secondary: 42A38: Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type 44A15: Special transforms (Legendre, Hilbert, etc.)

Mellin transform fractional Fourier transform fractional Mellin transform fractional operator


Omran, Maryam; Kiliçman, Adem. On fractional order Mellin transform and some of its properties. Tbilisi Math. J. 10 (2017), no. 1, 315--324. doi:10.1515/tmj-2017-0020. https://projecteuclid.org/euclid.tbilisi/1527300033

Export citation


  • J. Bertrand, P. Bertrand, and J. Ovarlez, The Mellin transform, in The Transforms and Applications Handbook, D. Alexander, Ed., CRC Press, Boca Raton, Fla, USA, 2nd edition, (2000).
  • R. Bracewell, The Fourier Transform and its Applications, New York (1965).
  • P.L. Butzer, S. Jansche, A direct approach to the Mellin transform, Journal Fourier Analysis and Application (1997) 325–376.
  • P.L. Butzer, S. Jansche, Mellin transform theory and the role of its differential and integral operators. In: Transform Methods and Special Functions, Varna 96 (Proc. 2nd Int. Workshop; P. Rusev, I. Dimovski, V. Kiryakova, Eds.), Bulg. Acad. Sci., Sofia (1998), 63–83.
  • B. Davies, Integral Transforms and their Applications, Springer, (2002).
  • L. Debnath and D. Bhatta, Integral Transforms and Their Applications, Chapman and Hall/CRC, Boca Raton-London-New York, 2007.
  • A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms, Vols 1-2., McGraw-Hill (1953)-(1955).
  • P. Flajolet, X. Gourdon, P. Dumas, Mellin transforms and asymptotics: Harmonic sums, Theo. Comp. Sci., 144(1-2),pp 3-58 (1995).
  • P. Flajolet, M. Regnier and R. Sedgewick, Some uses of the Mellin integral transform in the analysis of algorithms, in: A. Apostolico and Z. Galil, eds., Combinatorial Algorithms on Words (Springer, Berlin, 1985).
  • A. A. Kilbas, Yu. F. Luchko, H. Martinez, and J.J. Trujillo, Fractional Fourier transform in the framework of fractional calculus operators, Integral Transforms and Special Functions 21, pp. 779-795 (2010).
  • A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier, Amsterdam, (2006).
  • A. Kiliçman and M. Omran, Note on fractional Mellin transform and applications, SpringerPlus, 5(1) (2016):100.
  • N. Lebedev, Special functions and their applications, Dover,(1972).
  • Yu.F. Luchko and V. Kiryakova, The Mellin Integral Transform in Fractional Calculus, Fractional Calculus and Applied Analysis, vol(16)No.(2) pp.405-430 (2013).
  • Yu.F. Luchko, H. Martínez and J.J. Trujillo, Fractional Fourier Transform and Some of its Applications, Fractional Calculus and Applied Analysis, An International Journal for Theory and Applications, 11, No. 4 (2008).
  • F. Oberhettinger, Tables of Mellin Transforms, Springer-Verlag, New York - Heidelberg - Berlin (1974).
  • H.M. Ozaktas, Z. Zalevsky and M.A. Kutay, The Fractional Fourier Transform, Wiley, Chichester, (2001).
  • H. Oldham and N. Spanier, The Fractional Calculus, Academic Press, San Diego, CA, (1974).
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999)
  • L. G. Romero, R. A. Cerutti and L. L. Luque, A New Fractional Fourier Transform and Convolution Products, Int. Journal of Pure and Applied Mathematics, (66), No. 4 (2011), 397–408.
  • I. N. Sneddon, Fourier Transforms, Dover Publications, New York, (1995).
  • E.C. Titchmarsh, Introduction to the theory of Fourier integrals, Vol. 2. Oxford: Clarendon Press, (1948).
  • D.V. Widder, An Introduction to Transform Theory, Academic Press, New York, (1971).
  • X.-J. Yang, D. Baleanu and H. M. Srivastava, Local Fractional Integral Transforms and Their Applications, Academic Press (Elsevier Science Publishers), Amsterdam, Heidelberg, London and New York, (2016).
  • H. M. Srivastava, A. K. Golmankhaneh, D. Baleanu and X.-J. Yang, Local fractional Sumudu transform with applications to IVPs on Cantor sets, Abstr. Appl. Anal. 2014 (2014), Article ID 620529, 1-7.
  • H. M. Srivastava and O. Yürekli, A theorem on a Stieltjes-type integral transform and its applications, Complex Variables Theory Appl. 28 (1995), 159–168.
  • G. Dattoli, H. M. Srivastava and K. Zhukovsky, A new family of integral transforms and their applications, Integral Transforms Spec. Funct. 17 (2006), 31–37.
  • H. M. Srivastava, M.-J. Luo and R. K. Raina, A new integral transform and its applications, Acta Math. Sci. Ser. B Engl. Ed. 35 (2015), 1386–1400.