Tbilisi Mathematical Journal

Functional Variable Method for conformable fractional modified KdV-ZK equation and Maccari system

Yücel Çenesiz, Orkun Tasbozan, and Ali Kurt

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Modeling the motion and propagation characteristics of waves have importance in coastal, ocean and maritime engineering. Especially, waves are the major source of environmental actions on beaches or on man-made fixed or floating structures in most geographical areas. So Maccari system has great application in mentioned areas. The modified KdV is ion acoustic perturbations evolution model in a plasma with two negative ion components which have different temperatures. As for the KdV equation, the modified ZK (mZK) equation arises naturally as weakly two-dimensional variations of the mKdV equation. In this paper authors used functional variable method(FVM) for the first time to obtain exact travelling wave and soliton solutions of conformable fractional modified KdV-Zakharov-Kuznetsov(mKdv-ZK) equation and Maccari system. As a consequence, new solutions are obtained and it is seen that FVM is an valuable and efficient tool for solving nonlinear equations and systems where the derivatives defined by means of conformable fractional derivative.

Article information

Tbilisi Math. J., Volume 10, Issue 1 (2017), 117-125.

Received: 20 May 2016
Accepted: 7 July 2016
First available in Project Euclid: 26 May 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35R11: Fractional partial differential equations
Secondary: 34A08: Fractional differential equations 35A20: Analytic methods, singularities 26A33: Fractional derivatives and integrals

Functional Variable Method KdV-Zakharov-Kuznetsov Equation Maccari System Conformable Fractional Derivative


Çenesiz, Yücel; Tasbozan, Orkun; Kurt, Ali. Functional Variable Method for conformable fractional modified KdV-ZK equation and Maccari system. Tbilisi Math. J. 10 (2017), no. 1, 117--125. doi:10.1515/tmj-2017-0010. https://projecteuclid.org/euclid.tbilisi/1527300021

Export citation


  • Abdeljawad T., On conformable fractional calulus, J. Comput. Appl. Math., 279, 2015, 57-66.
  • Abdulaziz O., Hashim I., Ismail E.S., Approximate analytical solution to fractional modified KdV equations, Math. Comput. Model., 49 (1–2), 2009, 136-145.
  • Atangana A., Baleanu D., Alsaedi A., New properties of conformable derivative, Open Math., 13, 2015, 889-898.
  • Benkhettoua N., Hassania S., Torres D.F.M., A conformable fractional calculus on arbitrary time scales, J. King Saud Univ.-Sci., 28, 2016, 93-98.
  • Cattani C., Srivastava H. M., Yang X.J.,Fractional Dynamics, Emerging Science Publishers. De Gruyter Open, Berlin and Warsaw, 2015.
  • Cheemaa N., Younis M., New and more exact travelling wave solutions to integrable (2+1) dimensional Maccari system, Nonlinear Dynam., 83, 2016, 1395-1401.
  • Chung W.S., Fractional Newton mechanics with conformable fractional derivative, J. Comput. Appl. Math., 290, 2015, 150-158.
  • Demiray S. T., Pandir Y., Bulut H., New solitary wave solutions of Maccari system, Ocean Eng., 103, 2015, 153-159.
  • Duan Z., Yang X.J., Srivastava H. M.,On the Fractal Heat Transfer Problems with Local Fractional Calculus, Thermal Sci.,19(5),2015.
  • Elsaid A., Homotopy analysis method for solving a class of fractional partial differential equations, Commun. Nonlinear Sci. Numer. Simul., 16 (9), 2011, 3655-3664.
  • Eslami M., Rezazadeh H., The First integral method for Wu-Zhang system with conformable time-fractional derivative, Calcolo, DOI 10.1007/s10092-015-0158-8.
  • Eslami M., Solutions for space-time fractional $(2+1)$-dimensional dispersive long wave equations, Iran. J. Sci. Technol. Trans. A Sci. 2016.
  • Fu Z., Zhang L., Liu S., Liu S., Fractional transformation and new solutions to mKdV equation, Phys. Lett. A, 325 (5-6), 2004, 363-369.
  • Gökdoğan A., Ünal E., Çelik E., Existence and Uniqueness Theorems for Sequential Linear Conformable Fractional Differential Equations. Miskolc Math. Notes (In Press)
  • Guner O., Aksoy E., Bekir A., Cevikel A. C., Different methods for (3+1) dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation, Comput. Math. Appl., 71(6), 2016, 1259-1269.
  • Hammad M.A., Khalil R., Conformable Fractional Heat Equation, Int. J. of Pure Appl. Math., 94, 2014, 215-221.
  • Hammouch Z., Mekkaoui T., Approximate analytical solution to a time fractional Zakharov-Kuznetsov equation, Int. J. Phys. Res., 1 (2), 2013, 28-33.
  • He J.H., Exp-function Method for Fractional Differential Equations, Int. J. Nonlinear Sci. Numer. Simul, 14(6), 2013, 363-366.
  • Johnson M.A., The transverse instability of periodic waves in Zakharov-Kuznetsov type equations, Stud. Appl. Math., 124(4), 2010, 323-345.
  • Khalil R., Horani M. A., Yousef A., Sababheh M., A new definition of fractional derivative, J. Comput. Appl. Math., 264, 2014, 65-70.
  • Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, 2006.
  • Lu B., The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395 (2), 2012, 684-693.
  • Miller K.S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1993.
  • Neirameh A., New soliton solutions to the fractional perturbed nonlinear Schrodinger equation with power law nonlinearity. SeMA Journal. doi:10.1007/s40324-016-0070-4, 2015,1-15.
  • Oliveira E.C., Machado J.A.T., A review of definitions for fractional derivatives and integral, Math. Probl. Eng., 2014, 2014, 1-6.
  • Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999.
  • Sahoo S., Ray S.S., Improved fractional sub-equation method for (3+1) -dimensional generalized fractional KdV–Zakharov–Kuznetsov equations, Comput. Math. Appl, 70 (2), 2015, 158-166.
  • Sahoo S., Ray S. S., Solitary wave solutions for time fractional third order modified KdV equation using two reliable techniques $({G}'/G)$ expansion method and improved $({G}'/G)$expansion method, Phys. A, 448, 2016, 265-282.
  • Song L., Wang W., A new improved Adomian decomposition method and its application to fractional differential equations, Appl. Math. Model., 37 (3), 2013, 1590-1598.
  • Yang X.J., Baleanu D., Srivastava H. M., Local fractional integral transforms and their applications, Academic Press, 2015.
  • Yang X.J., Machado J.A T., Srivastava H. M., A new numerical technique for solving the local fractional diffusion equation: two-dimensional extended differential transform approach, Appl. Math. Comput. 274, 2016, 143-151.