Tbilisi Mathematical Journal

Algebra and local presentability: how algebraic are they? (A survey)

Jiří Adámek and Jiří Rosický

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

This is a survey of results concerning the algebraic hulls of two 2-categories: $\mathbf{VAR}$, the 2- category of finitary varieties, and $\mathbf{LFP}$, the 2-category of locally finitely presentable categories.

Note

The second author is supported by the Grant agency of the Czech republic under the grant P201/12/G028.

Article information

Source
Tbilisi Math. J., Volume 10, Issue 3 (2017), 279-295.

Dates
Received: 28 September 2017
Revised: 2 December 2017
First available in Project Euclid: 20 April 2018

Permanent link to this document
https://projecteuclid.org/euclid.tbilisi/1524232085

Digital Object Identifier
doi:10.1515/tmj-2017-0113

Mathematical Reviews number (MathSciNet)
MR3745465

Zentralblatt MATH identifier
06828616

Subjects
Primary: 18C10: Theories (e.g. algebraic theories), structure, and semantics [See also 03G30]
Secondary: 18C35: Accessible and locally presentable categories 08C05: Categories of algebras [See also 18C05]

Keywords
variety algebraic theory algebraic functor duality locally finitely presentable category

Citation

Adámek, Jiří; Rosický, Jiří. Algebra and local presentability: how algebraic are they? (A survey). Tbilisi Math. J. 10 (2017), no. 3, 279--295. doi:10.1515/tmj-2017-0113. https://projecteuclid.org/euclid.tbilisi/1524232085


Export citation

References

  • \itemsep=3pt
  • J. Adámek, V. Koubek and V. Trnková, How large are left exact functors? Theory Appl. Categ. 13 (2001), 377–390.
  • J. Adámek, V. Koubek and J. Velebil, A duality between infinitary varieties and algebraic theories, Comment. Math. Univ. Carolin. 41 (2000), 529–541.
  • J. Adámek, F. W. Lawvere and J. Rosick\' y, On the duality between varieties and algebraic theories, Algebra Universalis 49 (2003), 35–49.
  • J. Adámek, F. W. Lawvere and J. Rosick\' y, How algebraic is algebra?, Theory Appl. Categ. 8 (2001), 253–283.
  • J. Adámek, F. W. Lawvere and J. Rosick\' y, Continuous categories revisited, Theory Appl. Categ. 11 (2003), 252–282.
  • J. Adámek and J. Rosick\' y, Locally presentable and accessible categories, Cambridge Univ. Press 1994.
  • J. Adámek and J. Rosick\' y, On sifted colimits and generalized varieties, Theory Appl. Categ. 8 (2001), 33–53
  • J. Adámek, J. Rosick\' y and E. M. Vitale, On algebraically exact categories and essential localizations of varieties, J. Algebra 244 (2001), 450–477.
  • J. Adámek, J. Rosick\' y and E. M. Vitale, Algebraic theories, Cambridge Univ. Press 2011.
  • M. Artin, A. Grothendieck and J. L. Verdier, Théorie des topos et cohomologie étale des schémas, Lecture Notes in Math. 269, Springer-Verlag, Berlin 1972.
  • J. Beck, Distributive laws, Lecture Notes in Math. 80 (1969), 119–140.
  • C. Centazzo and E. M. Vitale, A duality relative to a limit doctrine, Theory Appl. Categ. 10 (2002), 486–497.
  • A. Day, Filter monads, continuous lattices and closure systems, Canad. J. Math. 27 (1975), 50–59.
  • H.-D. Donder, Regularity of ultrafilters and the core model, Israel J. Math. 63 (1988), 289–322.
  • B. Day and R. Street, Monoidal bicategories and Hopf algebroids, Adv. Math. 129 (1997), 99–157.
  • R. Garner, A characterization of algebraic exactness, J. Pure Appl. Algebra 8 (2017), 1421–1426.
  • P. Gabriel and F. Ulmer, Lokal Präsentierbare Kategorien, Lecture Notes in Math. 221, Springer-Verlag 1971.
  • P. Johnstone and A. Joyal, Continuous categories and exponentiable toposes, J. Pure Appl. Algebra 25 (1982), 255–296.
  • A. Kock, Monads for which structures are adjoint to units, J. Pure Appl. Algebra 104 (1995), 41–59.
  • F. W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. 50 (1963), 865–872.
  • F.,W. Lawvere, Ordinal sums and equational doctrines, Lecture Notes in Math. 80 (1969), 141–155.
  • I. J. Le Creurer, F. Marmolejo and E. M. Vitale, Beck's theorem for pseudo-monads, J. Pure Appl. Algebra 173 (2002), 293–313.
  • J. Reiterman, An example concerning set functors, Comment. Math. Univ. Carolin. 12 (1971), 227–233.
  • V. Trnková, On descriptive classification of set functors I, Comment. Math. Univ. Carolin. 12 (1971), 143–173.
  • O. Wyler, Algebraic theories of continuous lattices In: Continuous lattices (ed. B. Banaschewski and R.-E. Hoffmann), Lecture Notes in Math. 871, 390–413, Springer Verlag, Berlin 1981.