Stochastic Systems

Giant component in random multipartite graphs with given degree sequences

David Gamarnik and Sidhant Misra

Full-text: Open access

Abstract

We study the problem of the existence of a giant component in a random multipartite graph. We consider a random multipartite graph with $p$ parts generated according to a given degree sequence $n_{i}^{\mathbf{d}}(n),n\ge1$ which denotes the number of vertices in part $i$ of the multipartite graph with degree given by the vector $\mathbf{d}$ in an $n$-node graph. We assume that the empirical distribution of the degree sequence converges to a limiting probability distribution. Under certain mild regularity assumptions, we characterize the conditions under which, with high probability, there exists a component of linear size. The characterization involves checking whether the Perron-Frobenius norm of the matrix of means of a certain associated edge-biased distribution is greater than unity. We also specify the size of the giant component when it exists. We use the exploration process of Molloy and Reed Molloy and Reed (1995) to analyze the size of components in the random graph. The main challenges arise due to the multidimensionality of the random processes involved which prevents us from directly applying the techniques from the standard unipartite case. In this paper we use techniques from the theory of multidimensional Galton-Watson processes along with Lyapunov function technique to overcome the challenges.

Article information

Source
Stoch. Syst., Volume 5, Number 2 (2015), 372-408.

Dates
Received: December 2013
First available in Project Euclid: 23 December 2015

Permanent link to this document
https://projecteuclid.org/euclid.ssy/1450879458

Digital Object Identifier
doi:10.1214/13-SSY135

Mathematical Reviews number (MathSciNet)
MR3442431

Zentralblatt MATH identifier
1358.05258

Keywords
Giant component degree sequences random graphs

Citation

Gamarnik, David; Misra, Sidhant. Giant component in random multipartite graphs with given degree sequences. Stoch. Syst. 5 (2015), no. 2, 372--408. doi:10.1214/13-SSY135. https://projecteuclid.org/euclid.ssy/1450879458


Export citation

References

  • Bender, E. A. and Canfield, E. R. (1978). The asymptotic number of labelled graphs with given degree sequences. Journal of Combinatorial Theory 24 296–307.
  • Bollobás, B. (1985). Random Graphs. Academic Press.
  • Bollobás, B., Janson, S. and Riordan, O. (2007). The phase transition in inhomogeneous random graphs. Random Structures and Algorithms 31 3–122.
  • Bollobás, B. and Riordan, O. (2012). An old approach to the giant component problem.
  • Boss, M., Elsinger, H., Summer, M. and Thurner, S. (2004). Network topology of the interback market. Quantitative Finance 4.
  • Chen, N. and Olvera-Cravioto, M. (2013). Directed random graphs with given degree distributions. Arxiv.org 1207.2475.
  • Erdős, P. and Rényi, A. (1960). On the evolution of random graphs. Magayr Tud. Akad. Mat. Kutato Int. Kozl 5 17–61.
  • Gamarnik, D. and Misra, S. Hardness of MAX-CUT in bounded degree graphs with random edge deletions (in preparation).
  • Goh, K., Cusick, M. E., Valle, D., Childs, B., Vidal, M. and Barabasi, A. (2007). The human disease network. PNAS 104.
  • Jackson, M. O. (2008). Social and Economic Networks. Princeton University Press.
  • Janson, S. and Luczak, M. (2008). A new approach to the giant component problem. Random Structures and Algorithms 37 197–216.
  • Kang, M. and Seierstad, T. G. (2008). The critical phase for random graphs with a given degree sequence. Combinatorics, Probability and Computing 17 67–86.
  • Kesten, H. and Stigum, B. P. (1966). A limit theorem for multidimensional Galton-Watson processes. The Annals of Mathematical Statistics 37 1211–1223.
  • Misra, S. (2014). Decay of correlations and inference in graphical models. PhD thesis, Massachusetts Institute of Technology.
  • Molloy, M. and Reed, B. (1995). A critical point for random graphs with a given degree sequence. Random Structures and Algorithms 6 161–180.
  • Molloy, M. and Reed, B. (1998). The size of the largest component of a random graph on a fixed degree sequence. Combinatorics, Probability and Computing 7 295–306.
  • Morrision, J. L., Breitling, R., Higham, D. J. and Gilbert, D. R. (2006). A lock-and-key model for protein-protein interactions. Bioinformatics 22.
  • Newmann, M. E. J., Strogatz, S. H. and Watts, D. J. (2001). Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64.
  • Riordan, O. (2012). The phase transition in the configuration model. Combinatorics, Probability and Computing 21.
  • van der Hofstad, R., Hooghiemstra, G. and Mieghem, P. V. (2005). Distances in random graphs with finite variance degrees. Random Structures and Algorithms 27 76–123.
  • van der Hofstad, R., Hooghiemstra, G. and Znamenski, D. (2005a). Random graphs with arbitrary iid degrees. Arxiv.org math/0502580.
  • van der Hofstad, R., Hooghiemstra, G. and Znamenski, D. (2005b). Distances in random graphs with finite mean and infinite variance degrees. Eurandom.
  • Wormald, N. C. (1978). Some problems in the enumeration of labelled graphs. PhD thesis, Newcastle University.
  • Wormald, N. C. (1995). Differential equations for random processes and random graphs. Annals of Applied Probability 5 1217–1235.
  • Yildrim, M., Goh, K., Cusick, M. E., Barabasi, A. and Vidal, M. (2007). Drug-target network. Nat Biotechnol 25.