Statistics Surveys
- Statist. Surv.
- Volume 10 (2016), 1-52.
A survey of bootstrap methods in finite population sampling
Zeinab Mashreghi, David Haziza, and Christian Léger
Full-text: Open access
Abstract
We review bootstrap methods in the context of survey data where the effect of the sampling design on the variability of estimators has to be taken into account. We present the methods in a unified way by classifying them in three classes: pseudo-population, direct, and survey weights methods. We cover variance estimation and the construction of confidence intervals for stratified simple random sampling as well as some unequal probability sampling designs. We also address the problem of variance estimation in presence of imputation to compensate for item non-response.
Article information
Source
Statist. Surv., Volume 10 (2016), 1-52.
Dates
Received: December 2014
First available in Project Euclid: 15 March 2016
Permanent link to this document
https://projecteuclid.org/euclid.ssu/1458047831
Digital Object Identifier
doi:10.1214/16-SS113
Mathematical Reviews number (MathSciNet)
MR3476140
Zentralblatt MATH identifier
1351.62025
Subjects
Primary: 62D05: Sampling theory, sample surveys
Secondary: 62F40: Bootstrap, jackknife and other resampling methods
Keywords
Bootstrap bootstrap weights confidence intervals imputation missing data multistage designs pseudo-population approach survey sampling unequal probability sampling variance estimation
Citation
Mashreghi, Zeinab; Haziza, David; Léger, Christian. A survey of bootstrap methods in finite population sampling. Statist. Surv. 10 (2016), 1--52. doi:10.1214/16-SS113. https://projecteuclid.org/euclid.ssu/1458047831
References
- Aitkin, M. (2008). Applications of the bayesian bootstrap in finite population inference. Journal of Official Statistics 24(1), 21–51.
- Antal, E. and Y. Tillé (2011). A direct bootstrap method for complex sampling designs from a finite population. Journal of the American Statistical Association 106(494), 534–543.Mathematical Reviews (MathSciNet): MR2847968
Zentralblatt MATH: 1232.62030
Digital Object Identifier: doi:10.1198/jasa.2011.tm09767 - Antal, E. and Y. Tillé (2014). A new resampling method for sampling designs without replacement: the doubled half bootstrap. Computational Statistics 29(5), 1345–1363.Mathematical Reviews (MathSciNet): MR3266062
Zentralblatt MATH: 1306.65021
Digital Object Identifier: doi:10.1007/s00180-014-0495-0 - Barbe, P. and P. Bertail (1995). The weighted bootstrap, Lecture notes in statistics, Volume 98. Springer-Verlag, New York.
- Barbiero, A., G. Manzi, and F. Mecatti (2015). Bootstrapping probability-proportional-to-size samples via calibrated empirical population. Journal of Statistical Computation and Simulation 85(3), 608–620.Mathematical Reviews (MathSciNet): MR3275468
Digital Object Identifier: doi:10.1080/00949655.2013.833204 - Barbiero, A. and F. Mecatti (2010). Bootstrap algorithms for variance estimation in $\pi$ps sampling. In Complex data modeling and computationally intensive statistical methods, pp. 57–69. Springer.
- Beaumont, J.-F. and A.-S. Charest (2012). Bootstrap variance estimation with survey data when estimating model parameters. Computational Statistics and Data Analysis 56(12), 4450–4461.
- Beaumont, J.-F. and Z. Patak (2012). On the generalized bootstrap for sample surveys with special attention to Poisson sampling. International Statistical Review 80(1), 127–148.Mathematical Reviews (MathSciNet): MR2990349
Digital Object Identifier: doi:10.1111/j.1751-5823.2011.00166.x - Berger, Y. G. (2007). A jackknife variance estimator for unistage stratified samples with unequal probabilities. Biometrika 94(4), 953–964.Mathematical Reviews (MathSciNet): MR2416801
Zentralblatt MATH: 1156.62007
Digital Object Identifier: doi:10.1093/biomet/asm072 - Berger, Y. G. and C. J. Skinner (2005). A jackknife variance estimator for unequal probability sampling. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67(1), 79–89.Mathematical Reviews (MathSciNet): MR2136640
Zentralblatt MATH: 1060.62008
Digital Object Identifier: doi:10.1111/j.1467-9868.2005.00489.x - Bertail, P. and P. Combris (1997). Bootstrap généralisé d’un sondage. Annales d’économie et de statistique 46, 49–83.
- Bickel, P. J. and D. A. Freedman (1983). Asymptotic normality and the bootstrap in stratified sampling. Unpublished manuscript. Department of Statistics, University of California, Berkeley.Mathematical Reviews (MathSciNet): MR740906
Zentralblatt MATH: 0542.62009
Digital Object Identifier: doi:10.1214/aos/1176346500
Project Euclid: euclid.aos/1176346500 - Bickel, P. J. and D. A. Freedman (1984). Asymptotic normality and the bootstrap in stratified sampling. The Annals of Statistics 12(2), 470–482.Mathematical Reviews (MathSciNet): MR740906
Zentralblatt MATH: 0542.62009
Digital Object Identifier: doi:10.1214/aos/1176346500
Project Euclid: euclid.aos/1176346500 - Binder, D. A. (2011). Estimating model parameters from a complex survey under a model-design randomization framework. Pakistan Journal of Statistics 27(4), 371–390.Mathematical Reviews (MathSciNet): MR2919725
- Booth, J. G., R. W. Butler, and P. Hall (1994). Bootstrap methods for finite populations. Journal of the American Statistical Association 89(428), 1282–1289.Mathematical Reviews (MathSciNet): MR1310222
Zentralblatt MATH: 0812.62006
Digital Object Identifier: doi:10.1080/01621459.1994.10476868 - Campbell, C. and A. D. Little (1980). A different view of finite population estimation. In Proceedings of the Section on Survey Research Methods, pp. 319–324.
- Canty, A. J. and A. C. Davison (1999). Resampling-based variance estimation for labour force surveys. Journal of the Royal Statistical Society, Series D: The Statistician 48, 379–391.
- Carota, C. (2009). Beyond objective priors for the bayesian bootstrap analysis of survey data. Journal of Official Statistics 25(3), 405–413.
- Chao, M. T. and S.-H. Lo (1985). A bootstrap method for finite population. Sankhyā: The Indian Journal of Statistics, Series A 47, 399–405.
- Chao, M. T. and S.-H. Lo (1994). Maximum likelihood summary and the bootstrap method in structured finite populations. Statistica Sinica 4(2), 389–406.
- Chaudhuri, A. and A. Saha (2004). Extending sitter’s mirror-match bootstrap to cover rao-hartley-cochran sampling in two-stages with simulated illustrations. Sankhya: The Indian Journal of Statistics 66(4), 791–802.
- Chauvet, G. (2007). Méthodes de bootstrap en population finie. Ph. D. thesis, Université de Rennes 2.
- Chipperfield, J. and J. Preston (2007). Efficient bootstrap for business surveys. Survey Methodology 33(2), 167–172.
- Davison, A. and D. Hinkley (1997). Bootstrap Methods and Their Application. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press.
- Deville, J. C. (1999). Variance estimation for complex statistics and estimators: Linearization and residual techniques. Survey Methodology 25(2), 193–203.
- Durbin, J. (1959). A note on the application of Quenouille’s method of bias reduction to the estimation of ratios. Biometrika 46(3-4), 477–480.Mathematical Reviews (MathSciNet): MR110146
Zentralblatt MATH: 0090.36501
Digital Object Identifier: doi:10.1093/biomet/46.3-4.477 - Efron, B. (1979). Bootstrap methods: another look at the jackknife. The Annals of Statistics 7(1), 1–26.Mathematical Reviews (MathSciNet): MR515681
Zentralblatt MATH: 0406.62024
Digital Object Identifier: doi:10.1214/aos/1176344552
Project Euclid: euclid.aos/1176344552 - Escobar, E. L. and Y. G. Berger (2013). A jackknife variance estimator for self-weighted two-stage samples. Statistica Sinica 23(2), 595–613.
- Fay, R. E. (1991). A design-based perspective on missing data variance. In Proceedings of the 1991 Annual Research Conference, US Bureau of the census, pp. 429–440.
- Fuller, W. A. (2009). Sampling statistics. Wiley, New York.Zentralblatt MATH: 1179.62019
- Funaoka, F., H. Saigo, R. R. Sitter, and T. Toida (2006). Bernoulli bootstrap for stratified multistage sampling. Survey Methodology 32(2), 151–156.
- Gross, S. (1980). Median estimation in sample surveys. In Proceedings of the Section on Survey Research Methods, American Statistical Association, pp. 181–184.
- Gupta, V. K. and A. K. Nigam (1987). Mixed orthogonal arrays for variance estimation with unequal numbers of primary selections per stratum. Biometrika 74(4), 735–742.Mathematical Reviews (MathSciNet): MR919841
Zentralblatt MATH: 0628.62011
Digital Object Identifier: doi:10.1093/biomet/74.4.735 - Gurney, M. and R. S. Jewett (1975). Constructing orthogonal replications for variance estimation. Journal of the American Statistical Association 70(352), 819–821.
- Haziza, D. (2009). Imputation and inference in the presence of missing data. In C. Rao and D. Pfeffermann (Eds.), Handbook of Statistics 29A, Sample Surveys: Design, Methods and Applications, pp. 215–246. Elsevier.Mathematical Reviews (MathSciNet): MR2654640
Digital Object Identifier: doi:10.1016/S0169-7161(08)00010-2 - Holmberg, A. (1998). A bootstrap approach to probability proportional to size sampling. In Proceedings of the Section on Survey Research Methods, American Statistical Association, pp. 378–383.
- Horvitz, D. G. and D. J. Thompson (1952). A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association 47(260), 663–685.Mathematical Reviews (MathSciNet): MR53460
Zentralblatt MATH: 0047.38301
Digital Object Identifier: doi:10.1080/01621459.1952.10483446 - Isaki, C. T. and W. A. Fuller (1982). Survey design under the regression superpopulation model. Journal of the American Statistical Association 77(377), 89–96.Mathematical Reviews (MathSciNet): MR648029
Zentralblatt MATH: 0511.62016
Digital Object Identifier: doi:10.1080/01621459.1982.10477770 - Jones, H. L. (1974). Jackknife estimation of functions of stratum means. Biometrika 61(2), 343–348.
- Kim, J. K., A. Navarro, and W. A. Fuller (2006). Replication variance estimation for two-phase stratified sampling. Journal of the American Statistical Association 101(473), 312–320.Mathematical Reviews (MathSciNet): MR2268048
Zentralblatt MATH: 1118.62305
Digital Object Identifier: doi:10.1198/016214505000000763 - Kolenikov, S. (2010). Resampling variance estimation for complex survey data. Stata Journal, The: The official journal on Stata and statistics 10(2), 165–199.
- Kott, P. S. (1998). Using the delete-a-group jackknife variance estimator in practice. In Proceedings of the Survey Research Methods Section, American Statistical Association, pp. 763–768.
- Kott, P. S. (2001). The delete-a-group jackknife. Journal of Official Statistics 17(4), 521–526.
- Kovacevic, M. S., R. Huang, and Y. You (2006). Bootstrapping for variance estimation in multi-level models fitted to survey data. In Proceedings of the Survey Research Methods Section, American Statistical Association, pp. 3260–3269.
- Kovar, J. G., J. N. K. Rao, and C. F. J. Wu (1988). Bootstrap and other methods to measure errors in survey estimates. The Canadian Journal of Statistics 16, Supplement, 25–45.Mathematical Reviews (MathSciNet): MR997120
Zentralblatt MATH: 0663.62018
Digital Object Identifier: doi:10.2307/3315214 - Krewski, D. and J. N. K. Rao (1981). Inference from stratified samples: properties of the linearization, jackknife and balanced repeated replication methods. The Annals of Statistics 9(5), 1010–1019.Mathematical Reviews (MathSciNet): MR628756
Zentralblatt MATH: 0474.62013
Digital Object Identifier: doi:10.1214/aos/1176345580
Project Euclid: euclid.aos/1176345580 - Lahiri, P. (2003). On the impact of bootstrap in survey sampling and small-area estimation. Statistical Science 18(2), 199–210.Mathematical Reviews (MathSciNet): MR2019788
Zentralblatt MATH: 1331.62076
Digital Object Identifier: doi:10.1214/ss/1063994975
Project Euclid: euclid.ss/1063994975 - Lo, A. Y. (1991). Bayesian bootstrap clones and a biometry function. Sankhyā: The Indian Journal of Statistics, Series A 53(3), 320–333.
- Lumley, T. (2010). Complex surveys: a guide to analysis using R. Wiley, Hoboken, NJ.
- Lumley, T. (2014). survey: analysis of complex survey samples. R package version 3.30.
- Mashreghi, Z., C. Léger, and D. Haziza (2014). Bootstrap methods for imputed data from regression, ratio and hot-deck imputation. The Canadian Journal of Statistics 42(1), 142–167.Mathematical Reviews (MathSciNet): MR3181587
Zentralblatt MATH: 06290938
Digital Object Identifier: doi:10.1002/cjs.11206 - Mason, D. M. and M. A. Newton (1992). A rank statistics approach to the consistency of a general bootstrap. The Annals of Statistics 20(3), 1611–1624.Mathematical Reviews (MathSciNet): MR1186268
Zentralblatt MATH: 0777.62045
Digital Object Identifier: doi:10.1214/aos/1176348787
Project Euclid: euclid.aos/1176348787 - McCarthy, P. J. (1969). Pseudo-replication: Half samples. Review of the International Statistical Institute 37(3), 239–264.
- McCarthy, P. J. and C. B. Snowden (1985). The bootstrap and finite population sampling. Vital and Health Statistics, Series 2, No. 95. DHHS Publication No. (PHS) 85–1369. Public Health Service. Washington. U.S. Government Printing Office.
- Miller, R. G. (1974). The jackknife-a review. Biometrika 61(1), 1–15.
- Preston, J. (2009). Rescaled bootstrap for stratified multistage sampling. Survey Methodology 35(2), 227–234.
- Preston, J. and J. Chipperfield (2002). Using a generalised estimation methodology for ABS business surveys. Methodology Advisory Committee, ABS, Belconnen, Australia (available at www.abs.gov.au).
- Quenouille, M. H. (1956). Notes on bias in estimation. Biometrika 43(3-4), 353–360.Mathematical Reviews (MathSciNet): MR81040
Zentralblatt MATH: 0074.14003
Digital Object Identifier: doi:10.1093/biomet/43.3-4.353 - Ranalli, M. G. and F. Mecatti (2012). Comparing recent approaches for bootstrapping sample survey data: A first step toward a unified approach. In Proceedings of the Section on Survey Research Methods, American Statistical Association, pp. 4088–4099.
- Rao, J. N. K. (1965). On two simple schemes of unequal probability sampling without replacement. Journal of the Indian Statistical Association 3, 173–180.Mathematical Reviews (MathSciNet): MR201035
- Rao, J. N. K., H. O. Hartley, and W. G. Cochran (1962). On a simple procedure of unequal probability sampling without replacement. Journal of the Royal Statistical Society. Series B (Methodological) 24(2), 482–491.
- Rao, J. N. K. and J. Shao (1996). On balanced half-sample variance estimation in stratified random sampling. Journal of the American Statistical Association 91(433), 343–348.Mathematical Reviews (MathSciNet): MR1394090
Zentralblatt MATH: 0871.62013
Digital Object Identifier: doi:10.1080/01621459.1996.10476694 - Rao, J. N. K. and J. Shao (1999). Modified balanced repeated replication for complex survey data. Biometrika 86(2), 403–415.Mathematical Reviews (MathSciNet): MR1705398
Zentralblatt MATH: 0933.62010
Digital Object Identifier: doi:10.1093/biomet/86.2.403 - Rao, J. N. K. and C. F. J. Wu (1985). Inference from stratified samples: second-order analysis of three methods for nonlinear statistics. Journal of the American Statistical Association 80(391), 620–630.Mathematical Reviews (MathSciNet): MR803259
Zentralblatt MATH: 0603.62009
Digital Object Identifier: doi:10.1080/01621459.1985.10478162 - Rao, J. N. K. and C. F. J. Wu (1988). Resampling inference with complex survey data. Journal of the American Statistical Association 83(401), 231–241.Mathematical Reviews (MathSciNet): MR941020
Zentralblatt MATH: 0654.62015
Digital Object Identifier: doi:10.1080/01621459.1988.10478591 - Rao, J. N. K., C. F. J. Wu, and K. Yue (1992). Some recent work on resampling methods for complex surveys. Survey Methodology 18(2), 209–217.
- Rosén, B. (1997). Asymptotic theory for order sampling. Journal of Statistical Planning and Inference 62(2), 135–158.Mathematical Reviews (MathSciNet): MR1468158
Zentralblatt MATH: 0937.62012
Digital Object Identifier: doi:10.1016/S0378-3758(96)00185-1 - Rubin, D. B. (1976). Inference and missing data. Biometrika 63(3), 581–592.Mathematical Reviews (MathSciNet): MR455196
Zentralblatt MATH: 0344.62034
Digital Object Identifier: doi:10.1093/biomet/63.3.581 - Rust, K. (1985). Variance estimation for complex estimators in sample surveys. Journal of Official Statistics 1(4), 381–397.
- Rust, K. F. and J. N. K. Rao (1996). Variance estimation for complex surveys using replication techniques. Statistical methods in medical research 5(3), 283–310.
- Saigo, H. (2010). Comparing four bootstrap methods for stratified three-stage sampling. Journal of Official Statistics 26(1), 193–207.
- Saigo, H., J. Shao, and R. R. Sitter (2001). A repeated half-sample bootstrap and balanced repeated replications for randomly imputed data. Survey Methodology 27(2), 189–196.
- Sampford, M. R. (1967). On sampling without replacement with unequal probabilities of selection. Biometrika 54(3-4), 499–513.Mathematical Reviews (MathSciNet): MR223051
Digital Object Identifier: doi:10.1093/biomet/54.3-4.499 - Särndal, C.-E. (2007). The calibration approach in survey theory and practice. Survey Methodology 33(2), 99–119.
- Särndal, C.-E., B. Swensson, and J. H. Wretman (1997). Model assisted survey sampling. Berlin; New York: Springer-Verlag Inc.
- Shao, J. (2003). Impact of the bootstrap on sample surveys. Statistical Science 18(2), 191–198.Mathematical Reviews (MathSciNet): MR2019787
Zentralblatt MATH: 1331.62078
Digital Object Identifier: doi:10.1214/ss/1063994974
Project Euclid: euclid.ss/1063994974 - Shao, J. and Y. Chen (1998). Bootstrapping sample quantiles based on complex survey data under hot deck imputation. Statistica Sinica 8(4), 1071–1085.
- Shao, J. and J. N. K. Rao (1993). Standard errors for low income proportions estimated from stratified multi-stage samples. Sankhyā: The Indian Journal of Statistics, Series B 55(3), 393–414.
- Shao, J. and R. R. Sitter (1996). Bootstrap for imputed survey data. Journal of the American Statistical Association 91(435), 1278–1288.Mathematical Reviews (MathSciNet): MR1424624
Zentralblatt MATH: 0880.62011
Digital Object Identifier: doi:10.1080/01621459.1996.10476997 - Shao, J. and P. Steel (1999). Variance estimation for survey data with composite imputation and nonnegligible sampling fractions. Journal of the American Statistical Association 94(445), 254–265.Mathematical Reviews (MathSciNet): MR1689230
Zentralblatt MATH: 1072.62518
Digital Object Identifier: doi:10.1080/01621459.1999.10473841 - Shao, J. and D. Tu (1995). The Jackknife and Bootstrap. Springer Series in Statistics, New York.
- Shao, J. and C. F. J. Wu (1989). A general theory for jackknife variance estimation. The Annals of Statistics 17(3), 1176–1197.Mathematical Reviews (MathSciNet): MR1015145
Zentralblatt MATH: 0684.62034
Digital Object Identifier: doi:10.1214/aos/1176347263
Project Euclid: euclid.aos/1176347263 - Shao, J. and C. F. J. Wu (1992). Asymptotic properties of the balanced repeated replication method for sample quantiles. The Annals of Statistics 20(3), 1571–1593.Mathematical Reviews (MathSciNet): MR1186266
Zentralblatt MATH: 0766.62005
Digital Object Identifier: doi:10.1214/aos/1176348785
Project Euclid: euclid.aos/1176348785 - Sitter, R. R. (1992a). Comparing three bootstrap methods for survey data. The Canadian Journal of Statistics 20(2), 135–154.Mathematical Reviews (MathSciNet): MR1183077
Zentralblatt MATH: 0753.62006
Digital Object Identifier: doi:10.2307/3315464 - Sitter, R. R. (1992b). A resampling procedure for complex survey data. Journal of the American Statistical Association 87(419), 755–765.Mathematical Reviews (MathSciNet): MR1185197
Zentralblatt MATH: 0760.62013
Digital Object Identifier: doi:10.1080/01621459.1992.10475277 - Sitter, R. R. (1993). Balanced repeated replications based on orthogonal multi-arrays. Biometrika 80(1), 211–221.Mathematical Reviews (MathSciNet): MR1225226
Zentralblatt MATH: 0769.62054
Digital Object Identifier: doi:10.1093/biomet/80.1.211 - Tukey, J. W. (1958). Bias and confidence in not quite large samples. Abstract. The Annals of Mathematical Statistics 29, 614.
- Wang, Z. and M. E. Thompson (2012). A resampling approach to estimate variance components of multilevel models. The Canadian Journal of Statistics 40(1), 150–171.Mathematical Reviews (MathSciNet): MR2896935
Zentralblatt MATH: 1236.62004
Digital Object Identifier: doi:10.1002/cjs.10136 - Wolter, K. M. (2007). Introduction to Variance Estimation. Springer Series in Statistics, New York.Zentralblatt MATH: 1284.62023
- Wu, C. F. J. (1991). Balanced repeated replications based on mixed orthogonal arrays. Biometrika 78(1), 181–188.
The American Statistical Association, the Bernoulli Society, the Institute of Mathematical Statistics, and the Statistical Society of Canada

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- A pseudo empirical likelihood approach for stratified samples with nonresponse
Fang, Fang, Hong, Quan, and Shao, Jun, Annals of Statistics, 2009 - Bayesian estimation under informative sampling
Savitsky, Terrance D. and Toth, Daniell, Electronic Journal of Statistics, 2016 - Estimation of the proportion of a sensitive attribute based on a two-stage randomized response model with stratified unequal probability sampling
Lee, Gi-Sung, Hong, Ki-Hak, Kim, Jong-Min, and Son, Chang-Kyoon, Brazilian Journal of Probability and Statistics, 2014
- A pseudo empirical likelihood approach for stratified samples with nonresponse
Fang, Fang, Hong, Quan, and Shao, Jun, Annals of Statistics, 2009 - Bayesian estimation under informative sampling
Savitsky, Terrance D. and Toth, Daniell, Electronic Journal of Statistics, 2016 - Estimation of the proportion of a sensitive attribute based on a two-stage randomized response model with stratified unequal probability sampling
Lee, Gi-Sung, Hong, Ki-Hak, Kim, Jong-Min, and Son, Chang-Kyoon, Brazilian Journal of Probability and Statistics, 2014 - Fractional Imputation in Survey Sampling: A Comparative Review
Yang, Shu and Kim, Jae Kwang, Statistical Science, 2016 - Asymptotic Properties of the Balanced Repeated Replication Method for Sample Quantiles
Shao, Jun and Wu, C. F. J., Annals of Statistics, 1992 - Inference From Stratified Samples: Properties of the Linearization, Jackknife and Balanced Repeated Replication Methods
Krewski, D. and Rao, J. N. K., Annals of Statistics, 1981 - $L$-Statistics in Complex Survey Problems
Shao, Jun, Annals of Statistics, 1994 - Hierarchical Bayesian estimation of inequality
measures with nonrectangular censored survey data with an application
to wealth distribution of French households
Gautier, Eric, Annals of Applied Statistics, 2011 - On Measuring the Quality of Survey Estimates
Rao, J.N.K., International Statistical Review, 2005 - Active matrix factorization for surveys
Zhang, Chelsea, Taylor, Sean J., Cobb, Curtiss, and Sekhon, Jasjeet, Annals of Applied Statistics, 2020
