Statistical Science

Quantum Science and Quantum Technology

Yazhen Wang and Xinyu Song

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Quantum science and quantum technology are of great current interest in multiple frontiers of many scientific fields ranging from computer science to physics and chemistry, and from engineering to mathematics and statistics. Their developments will likely lead to a new wave of scientific revolutions and technological innovations in a wide range of scientific studies and applications. This paper provides a brief review on quantum communication, quantum information, quantum computation, quantum simulation, and quantum metrology. We present essential quantum properties, illustrate relevant concepts of quantum science and quantum technology, and discuss their scientific developments. We point out the need for statistical analysis in their developments, as well as their potential applications to and impacts on statistics and data science.

Article information

Source
Statist. Sci., Volume 35, Number 1 (2020), 51-74.

Dates
First available in Project Euclid: 3 March 2020

Permanent link to this document
https://projecteuclid.org/euclid.ss/1583226029

Digital Object Identifier
doi:10.1214/19-STS745

Mathematical Reviews number (MathSciNet)
MR4071358

Keywords
Quantum communication quantum information quantum computation quantum simulation quantum annealing quantum sensing and quantum metrology quantum bit (qubit)

Citation

Wang, Yazhen; Song, Xinyu. Quantum Science and Quantum Technology. Statist. Sci. 35 (2020), no. 1, 51--74. doi:10.1214/19-STS745. https://projecteuclid.org/euclid.ss/1583226029


Export citation

References

  • Aaronson, S. and Chen, L. (2017). Complexity-theoretic foundations of quantum supremacy experiments. In 32nd Computational Complexity Conference. LIPIcs. Leibniz Int. Proc. Inform. 79 Art. No. 22, 67. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern.
  • Abrams, D. S. and Lloyd, S. (1997). Simulation of many-body Fermi systems on a universal quantum computer. Phys. Rev. Lett. 79 2586.
  • Acín, A. and Masanes, L. (2016). Certified randomness in quantum physics. Nature 540 213.
  • Adachi, S. H. and Henderson, M. P. (2015). Application of quantum annealing to training of deep neural networks. Preprint. Available at arXiv:1510.06356.
  • Aharonov, D. and Ta-Shma, A. (2003). Adiabatic quantum state generation and statistical zero knowledge. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing 20–29. ACM, New York.
  • Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S. and Regev, O. (2008). Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Rev. 50 755–787.
  • Albash, T. and Lidar, D. A. (2018). Adiabatic quantum computation. Rev. Modern Phys. 90 015002, 64.
  • Albash, T., Rønnow, T. F., Troyer, M. and Lidar, D. A. (2015). Reexamining classical and quantum models for the d-wave one processor. The European Physical Journal Special Topics 224 111–129.
  • Amin, M. H., Andriyash, E., Rolfe, J., Kulchytskyy, B. and Melko, R. (2018). Quantum Boltzmann machine. Phys. Rev. X 8 021050.
  • Arodz, T. and Saeedi, S. (2019). Quantum sparse support vector machines. Available at arXiv:1902.01879v2.
  • Artiles, L. M., Gill, R. D. and Guţă, M. I. (2005). An invitation to quantum tomography. J. R. Stat. Soc. Ser. B. Stat. Methodol. 67 109–134.
  • Arunachalam, S. and de Wolf, R. (2018). Optimal quantum sample complexity of learning algorithms. J. Mach. Learn. Res. 19 Paper No. 71, 36.
  • Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., Biswas, R., Boixo, S., Brandao, F. G. S. L. et al. (2019). Quantum supremacy using a programmable superconducting processor. Nature 574 505–510.
  • Aspuru-Guzik, A. and Walther, P. (2012). Photonic quantum simulators. Nature Physics 8 285.
  • Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. and Head-Gordon, M. (2005). Simulated quantum computation of molecular energies. Science 309 1704–1707.
  • Benedetti, M., Realpe-Gómez, J., Biswas, R. and Perdomo-Ortiz, A. (2016). Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning. Phys. Rev. A 94 022308.
  • Bennett, C. H. and Brassard, G. (2014). Quantum cryptography: Public key distribution and coin tossing. Theoret. Comput. Sci. 560 7–11.
  • Bernstein, D. J. and Lange, T. (2017). Post-quantum cryptography-dealing with the fallout of physics success. IACR Cryptology ePrint Archive 2017 314.
  • Bertsimas, D. and Tsitsiklis, J. (1993). Simulated annealing. Statist. Sci. 8 10–15.
  • Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N. and Lloyd, S. (2017). Quantum machine learning. Nature 549 195–202.
  • Blatt, R. and Roos, C. F. (2012). Quantum simulations with trapped ions. Nature Physics 8 277.
  • Bloch, I., Dalibard, J. and Nascimbene, S. (2012). Quantum simulations with ultracold quantum gases. Nature Physics 8 267.
  • Boghosian, B. M. and Taylor, W. IV (1998). Simulating quantum mechanics on a quantum computer Phys. D, Nonlinear Phenom. 120 30–42.
  • Boixo, S., Rønnow, T. F., Isakov, S. V., Wang, Z., Wecker, D., Lidar, D. A., Martinis, J. M. and Troyer, M. (2014). Evidence for quantum annealing with more than one hundred qubits. Nature Physics 10 218.
  • Boixo, S., Smelyanskiy, V. N., Shabani, A., Isakov, S. V., Dykman, M., Denchev, V. S., Amin, M. H., Smirnov, A. Y., Mohseni, M. et al. (2016). Computational multiqubit tunnelling in programmable quantum annealers. Nat. Commun. 7 10327.
  • Boixo, S., Isakov, S. V., Smelyanskiy, V. N., Babbush, R., Ding, N., Jiang, Z., Bremner, M. J., Martinis, J. M. and Neven, H. (2018). Characterizing quantum supremacy in near-term devices. Nature Physics 14 595.
  • Bouland, A., Fefferman, B., Nirkhe, C. and Vazirani, U. (2018). Quantum supremacy and the complexity of random circuit sampling. Preprint. Available at arXiv:1803.04402.
  • Brady, L. T. and van Dam, W. (2016). Quantum Monte Carlo simulations of tunneling in quantum adiabatic optimization. Phys. Rev. A 93 032304.
  • Brandão, F. G. S. L., Kalev, A., Li, T., Lin, C. Y.-Y., Svore, K. M. and Wu, X. (2019). Quantum SDP solvers: Large speed-ups, optimality, and applications to quantum learning. In 46th International Colloquium on Automata, Languages, and Programming. LIPIcs. Leibniz Int. Proc. Inform. 132 Art. No. 27, 14. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern.
  • Bravyi, S., Gosset, D. and König, R. (2018). Quantum advantage with shallow circuits. Science 362 308–311.
  • Brooke, J., Bitko, D. and Aeppli, G. (1999). Quantum annealing of a disordered magnet. Science 284 779–781.
  • Browne, D. (2014). Quantum computation: Model versus machine. Nature Physics 10 179.
  • Buhrman, H., Cleve, R., Massar, S. and De Wolf, R. (2010). Nonlocality and communication complexity. Rev. Modern Phys. 82 665.
  • Cai, T., Kim, D., Wang, Y., Yuan, M. and Zhou, H. H. (2016). Optimal large-scale quantum state tomography with Pauli measurements. Ann. Statist. 44 682–712.
  • Campbell, E. T., Terhal, B. M. and Vuillot, C. (2017). Roads towards fault-tolerant universal quantum computation. Nature 549 172–179.
  • Childs, A. M., Maslov, D., Nam, Y., Ross, N. J. and Su, Y. (2018). Toward the first quantum simulation with quantum speedup. Proc. Natl. Acad. Sci. USA 115 9456–9461.
  • Chong, F. T., Franklin, D. and Martonosi, M. (2017). Programming languages and compiler design for realistic quantum hardware. Nature 549 180–187.
  • Chowdhury, A. N. and Somma, R. D. (2017). Quantum algorithms for Gibbs sampling and hitting-time estimation. Quantum Inf. Comput. 17 41–64.
  • Ciliberto, C., Herbster, M., Ialongo, A. D., Pontil, M., Rocchetto, A., Severini, S. and Wossnig, L. (2018). Quantum machine learning: A classical perspective. Proc. A. 474 20170551, 26.
  • Cirac, J. I. and Zoller, P. (2012). Goals and opportunities in quantum simulation. Nature Physics 8 264.
  • Cross, A. W., Smith, G. and Smolin, J. A. (2015). Quantum learning robust against noise. Phys. Rev. A 92 012327.
  • Crosson, E. and Harrow, A. W. (2016). Simulated quantum annealing can be exponentially faster than classical simulated annealing. In 57th Annual IEEE Symposium on Foundations of Computer Science—FOCS 2016 714–723. IEEE Computer Soc., Los Alamitos, CA.
  • Das, A. and Chakrabarti, B. K. (2005). Quantum Annealing and Related Optimization Methods 679. Springer, Berlin.
  • Das, A. and Chakrabarti, B. K. (2008). Colloquium: Quantum annealing and analog quantum computation. Rev. Modern Phys. 80 1061–1081.
  • Degen, C. L., Reinhard, F. and Cappellaro, P. (2017). Quantum sensing. Rev. Modern Phys. 89 035002, 39.
  • Denchev, V. S., Boixo, S., Isakov, S. V., Ding, N., Babbush, R., Smelyanskiy, V., Martinis, J. and Neven, H. (2016). What is the computational value of finite-range tunneling? Phys. Rev. X 6 031015.
  • Deutsch, D. (1985). Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 400 97–117.
  • DiCarlo, L., Chow, J. M., Gambetta, J. M., Bishop, L. S., Johnson, B. R., Schuster, D. I., Majer, J., Blais, A., Frunzio, L. et al. (2009). Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460 240–244.
  • DiVincenzo, D. P. (1995). Quantum computation. Science 270 255–261.
  • Dunjko, V. and Briegel, H. J. (2018). Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Rep. Progr. Phys. 81 074001, 67.
  • Dunjko, V., Taylor, J. M. and Briegel, H. J. (2016). Quantum-enhanced machine learning. Phys. Rev. Lett. 117 130501, 6.
  • Farhi, E., Goldstone, J. and Gutmann, S. (2002). Quantum adiabatic evolution algorithms versus simulated annealing. Preprint. Available at quant-ph/0201031.
  • Farhi, E., Goldstone, J., Gutmann, S. and Sipser, M. (1998). Limit on the speed of quantum computation in determining parity. Phys. Rev. Lett. 81 5442–5444.
  • Farhi, E., Goldstone, J., Gutmann, S. and Sipser, M. (2000). Quantum computation by adiabatic evolution. Preprint. Available at quant-ph/0001106.
  • Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A. and Preda, D. (2001). A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292 472–476.
  • Feynman, R. P. (1981/82). Simulating physics with computers. Internat. J. Theoret. Phys. 21 467–488.
  • Granade, C. E., Ferrie, C., Wiebe, N. and Cory, D. G. (2012). Robust online Hamiltonian learning. New J. Phys. 14 103013, 31.
  • Grilo, A. B., Kerenidis, I. and Zijlstra, T. (2018). Learning with errors is easy with quantum samples. Available at arXiv:1702.08255v2.
  • Grover, L. K. (1997). Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79 325.
  • Harrow, A. W. and Montanaro, A. (2017). Quantum computational supremacy. Nature 549 203–209.
  • Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M. and Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature 567 209–212.
  • Hayashi, M. (2006). Quantum Information. Springer, Berlin.
  • Holevo, A. S. (1998). The capacity of the quantum channel with general signal states. IEEE Trans. Inform. Theory 44 269–273.
  • Horodecki, R., Horodecki, P., Horodecki, M. and Horodecki, K. (2009). Quantum entanglement. Rev. Modern Phys. 81 865–942.
  • Houck, A. A., Türeci, H. E. and Koch, J. (2012). On-chip quantum simulation with superconducting circuits. Nature Physics 8 292.
  • Isakov, S. V., Mazzola, G., Smelyanskiy, V. N., Jiang, Z., Boixo, S., Neven, H. and Troyer, M. (2016). Understanding quantum tunneling through quantum Monte-Carlo simulations. Phys. Rev. Lett. 117 180402.
  • Jané, E., Vidal, G., Dür, W., Zoller, P. and Cirac, J. I. (2003). Simulation of quantum dynamics with quantum optical systems. Quantum Inf. Comput. 3 15–37.
  • Jiang, Z., Smelyanskiy, V. N., Isakov, S. V., Boixo, S., Mazzola, G., Troyer, M. and Neven, H. (2017). Scaling analysis and instantons for thermally assisted tunneling and quantum Monte Carlo simulations. Phys. Rev. A 95 012322.
  • Johnson, M. W., Amin, M. H. S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A. J., Johansson, J. et al. (2011). Quantum annealing with manufactured spins. Nature 473 194–198.
  • Jordan, S. P. (2005). Fast quantum algorithm for numerical gradient estimation. Phys. Rev. Lett. 95 050501.
  • Jörg, T., Krzakala, F., Kurchan, J. and Maggs, A. C. (2010). Quantum annealing of hard problems. Progr. Theoret. Phys. Suppl. 184 290–303.
  • Kadowaki, T. and Nishimori, H. (1998). Quantum annealing in the transverse Ising model. Phys. Rev. E (3) 58 5355.
  • Kassal, I., Jordan, S. P., Love, P. J., Mohseni, M. and Aspuru-Guzik, A. (2008). Polynomial-time quantum algorithm for the simulation of chemical dynamics. Proc. Natl. Acad. Sci. USA pnas–0808245105.
  • Kassal, I., Whitfield, J. D., Perdomo-Ortiz, A., Yung, M.-H. and Aspuru-Guzik, A. (2011). Simulating chemistry using quantum computers. Annu Rev Phys Chem 62 185–207.
  • Kieferova, M. and Wiebe, N. (2016). Tomography and generative data modeling via quantum boltzmann training. Preprint. Available at arXiv:1612.05204.
  • Kirkpatrick, S., Gelatt, C. D. Jr. and Vecchi, M. P. (1983). Optimization by simulated annealing. Science 220 671–680.
  • Krenn, M., Malik, M., Scheidl, T., Ursin, R. and Zeilinger, A. (2017). Quantum communication with photons. Preprint. Available at arXiv:1701.00989.
  • Kruse, I., Lange, K., Peise, J., Lücke, B., Pezzè, L., Arlt, J., Ertmer, W., Lisdat, C., Santos, L. et al. (2016). Improvement of an atomic clock using squeezed vacuum. Phys. Rev. Lett. 117 143004.
  • Lanyon, B. P., Whitfield, J. D., Gillett, G. G., Goggin, M. E., Almeida, M. P., Kassal, I., Biamonte, J. D., Mohseni, M., Powell, B. J. et al. (2010). Towards quantum chemistry on a quantum computer. Nat Chem 2 106–111.
  • Lloyd, S. (1996). Universal quantum simulators. Science 273 1073–1078.
  • Lloyd, S., Mohseni, M. and Rebentrost, P. (2014). Quantum principal component analysis. Nature Physics 10 631.
  • Lund, A., Bremner, M. J. and Ralph, T. (2017). Quantum sampling problems, bosonsampling and quantum supremacy. Npj Quantum Information 3 15.
  • Malley, J. D. and Hornstein, J. (1993). Quantum statistical inference. Statist. Sci. 8 433–457.
  • Mariantoni, M., Wang, H., Yamamoto, T., Neeley, M., Bialczak, R. C., Chen, Y., Lenander, M., Lucero, E., OaConnell, A. D. et al. (2011). Implementing the quantum von Neumann architecture with superconducting circuits. Science 1208517.
  • Markov, I. L., Fatima, A., Isakov, S. V. and Boixo, S. (2018). Quantum supremacy is both closer and farther than it appears. Preprint. Available at arXiv:1807.10749.
  • Marvian, I. and Lloyd, S. (2016). Universal quantum emulator. Preprint. Available at arXiv:1606.02734.
  • McGeoch, C. C. (2014). Adiabatic quantum computation and quantum annealing: Theory and practice. Synthesis Lectures on Quantum Computing 5 1–93.
  • Mohseni, M., Read, P., Neven, H., Boixo, S., Denchev, V., Babbush, R., Fowler, A., Smelyanskiy, V. and Martinis, J. (2017). Commercialize quantum technologies in five years. Nature News 543 171.
  • Montanaro, A. (2016). Quantum algorithms: An overview. Npj Quantum Information 2 15023.
  • Neill, C., Roushan, P., Kechedzhi, K. et al. (2018). A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360 195–199.
  • Nielsen, M. A. and Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge Univ. Press, Cambridge.
  • O’Gorman, B., Babbush, R., Perdomo-Ortiz, A., Aspuru-Guzik, A. and Smelyanskiy, V. (2015). Bayesian network structure learning using quantum annealing. The European Physical Journal Special Topics 224 163–188.
  • Paesani, S., Gentile, A. A., Santagati, R., Wang, J., Wiebe, N., Tew, D. P., O’Brien, J. L. and Thompson, M. G. (2017). Experimental Bayesian quantum phase estimation on a silicon photonic chip. Phys. Rev. Lett. 118 100503.
  • Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. and Treutlein, P. (2018). Quantum metrology with nonclassical states of atomic ensembles. Rev. Modern Phys. 90 035005, 70.
  • Rebentrost, P., Mohseni, M. and Lloyd, S. (2014). Quantum support vector machine for big data classification. Phys. Rev. Lett. 113 130503.
  • Richter, P. C. (2006). Quantum speedup of classical mixing processes. Phys. Rev. A 76 042306.
  • Rivest, R. L., Shamir, A. and Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21 120–126.
  • Rønnow, T. F., Wang, Z., Job, J., Boixo, S., Isakov, S. V., Wecker, D., Martinis, J. M., Lidar, D. A. and Troyer, M. (2014). Defining and detecting quantum speedup. Science 345 420–424.
  • Sakurai, J. and Napolitano, J. (2017). Modern Quantum Mechanics. Modern Quantum Mechanics, by JJ Sakurai, Jim Napolitano. Cambridge Univ. Press, Cambridge.
  • Salakhutdinov, R. and Hinton, G. (2009). Deep Boltzmann machines. In Artificial Intelligence and Statistics 448–455.
  • Sangouard, N., Simon, C., De Riedmatten, H. and Gisin, N. (2011). Quantum repeaters based on atomic ensembles and linear optics. Rev. Modern Phys. 83 33.
  • Sayrin, C., Dotsenko, I., Zhou, X., Peaudecerf, B., Rybarczyk, T., Gleyzes, S., Rouchon, P., Mirrahimi, M., Amini, H. et al. (2011). Real-time quantum feedback prepares and stabilizes photon number states. Nature 477 73–77.
  • Schumacher, B. (1995). Quantum coding. Phys. Rev. A (3) 51 2738–2747.
  • Schumacher, B. and Westmoreland, M. D. (1997). Sending classical information via noisy quantum channels. Phys. Rev. A 56 131.
  • Shankar, R. (2012). Principles of Quantum Mechanics. Springer, New York.
  • Shenvi, N., Kempe, J. and Whaley, K. B. (2003). Quantum random-walk search algorithm. Phys. Rev. A 67 052307.
  • Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. In 35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM, 1994) 124–134. IEEE Comput. Soc. Press, Los Alamitos, CA.
  • Svore, K. M., Hastings, M. B. and Freedman, M. (2014). Faster phase estimation. Quantum Inf. Comput. 14 306–328.
  • Szegedy, M. (2004). Quantum speed-up of Markov chain based algorithms. In Proceedings-Annual IEEE Symposium on Foundations of Computer Science, FOCS 32–41.
  • Temme, K., Osborne, T. J., Vollbrecht, K. G., Poulin, D. and Verstraete, F. (2011). Quantum Metropolis sampling. Nature 471 87–90.
  • Wang, Y. (2011). Quantum Monte Carlo simulation. Ann. Appl. Stat. 5 669–683.
  • Wang, Y. (2012). Quantum computation and quantum information. Statist. Sci. 27 373–394.
  • Wang, Y. (2013). Asymptotic equivalence of quantum state tomography and noisy matrix completion. Ann. Statist. 41 2462–2504.
  • Wang, Y., Wu, S. and Zou, J. (2016). Quantum annealing with Markov chain Monte Carlo simulations and D-wave quantum computers. Statist. Sci. 31 362–398.
  • Wang, Y. and Xu, C. (2015). Density matrix estimation in quantum homodyne tomography. Statist. Sinica 25 953–973.
  • Wiebe, N. and Granade, C. (2016). Efficient Bayesian phase estimation. Phys. Rev. Lett. 117 010503.
  • Wiebe, N., Granade, C. and Cory, D. G. (2015). Quantum bootstrapping via compressed quantum Hamiltonian learning. New J. Phys. 17 022005.
  • Wiebe, N., Kapoor, A. and Svore, K. M. (2015). Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning. Quantum Inf. Comput. 15 316–356.
  • Wiebe, N., Kapoor, A. and Svore, K. M. (2016). Quantum deep learning. Quantum Inf. Comput. 16 541–587.
  • Wiebe, N., Granade, C., Ferrie, C. and Cory, D. G. (2014). Hamiltonian learning and certification using quantum resources. Phys. Rev. Lett. 112 190501.
  • Wittek, P. (2014). Quantum Machine Learning: What Quantum Computing Means to Data Mining. Academic Press, San Diego.
  • Yin, J., Cao, Y., Li, Y.-H., Liao, S.-K., Zhang, L., Ren, J.-G., Cai, W.-Q., Liu, W.-Y., Li, B. et al. (2017). Satellite-based entanglement distribution over 1200 kilometers. Science 356 1140–1144.