Abstract
Researchers are often challenged with assessing the impact of an intervention on an outcome of interest in situations where the intervention is nonrandomised, the intervention is only applied to one or few units, the intervention is binary, and outcome measurements are available at multiple time points. In this paper, we review existing methods for causal inference in these situations. We detail the assumptions underlying each method, emphasize connections between the different approaches and provide guidelines regarding their practical implementation. Several open problems are identified thus highlighting the need for future research.
Citation
Pantelis Samartsidis. Shaun R. Seaman. Anne M. Presanis. Matthew Hickman. Daniela De Angelis. "Assessing the Causal Effect of Binary Interventions from Observational Panel Data with Few Treated Units." Statist. Sci. 34 (3) 486 - 503, August 2019. https://doi.org/10.1214/19-STS713
Information