Statistical Science
- Statist. Sci.
- Volume 34, Number 3 (2019), 454-471.
User-Friendly Covariance Estimation for Heavy-Tailed Distributions
Yuan Ke, Stanislav Minsker, Zhao Ren, Qiang Sun, and Wen-Xin Zhou
Abstract
We provide a survey of recent results on covariance estimation for heavy-tailed distributions. By unifying ideas scattered in the literature, we propose user-friendly methods that facilitate practical implementation. Specifically, we introduce elementwise and spectrumwise truncation operators, as well as their $M$-estimator counterparts, to robustify the sample covariance matrix. Different from the classical notion of robustness that is characterized by the breakdown property, we focus on the tail robustness which is evidenced by the connection between nonasymptotic deviation and confidence level. The key insight is that estimators should adapt to the sample size, dimensionality and noise level to achieve optimal tradeoff between bias and robustness. Furthermore, to facilitate practical implementation, we propose data-driven procedures that automatically calibrate the tuning parameters. We demonstrate their applications to a series of structured models in high dimensions, including the bandable and low-rank covariance matrices and sparse precision matrices. Numerical studies lend strong support to the proposed methods.
Article information
Source
Statist. Sci., Volume 34, Number 3 (2019), 454-471.
Dates
First available in Project Euclid: 11 October 2019
Permanent link to this document
https://projecteuclid.org/euclid.ss/1570780979
Digital Object Identifier
doi:10.1214/19-STS711
Mathematical Reviews number (MathSciNet)
MR4017523
Zentralblatt MATH identifier
07162132
Keywords
Covariance estimation heavy-tailed data $M$-estimation nonasymptotics tail robustness truncation
Citation
Ke, Yuan; Minsker, Stanislav; Ren, Zhao; Sun, Qiang; Zhou, Wen-Xin. User-Friendly Covariance Estimation for Heavy-Tailed Distributions. Statist. Sci. 34 (2019), no. 3, 454--471. doi:10.1214/19-STS711. https://projecteuclid.org/euclid.ss/1570780979
Supplemental materials
- Supplement to “User-Friendly Covariance Estimation for Heavy-Tailed Distributions”. In this supplement, we provide proofs of all the theoretical results in the main text. In addition, we investigate robust covariance estimation and inference under factor models, which might be of independent interest.Digital Object Identifier: doi:10.1214/19-STS711SUPPSupplemental files are immediately available to subscribers. Non-subscribers gain access to supplemental files with the purchase of the article.

