Statistical Science

Comment on “Probabilistic Integration: A Role in Statistical Computation?”

Michael L. Stein and Ying Hung

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Statist. Sci., Volume 34, Number 1 (2019), 34-37.

Dates
First available in Project Euclid: 12 April 2019

Permanent link to this document
https://projecteuclid.org/euclid.ss/1555056028

Digital Object Identifier
doi:10.1214/18-STS677

Mathematical Reviews number (MathSciNet)
MR3938961

Citation

Stein, Michael L.; Hung, Ying. Comment on “Probabilistic Integration: A Role in Statistical Computation?”. Statist. Sci. 34 (2019), no. 1, 34--37. doi:10.1214/18-STS677. https://projecteuclid.org/euclid.ss/1555056028


Export citation

References

  • Blackwell, D. and Dubins, L. (1962). Merging of opinions with increasing information. Ann. Math. Stat. 33 882–886.
  • Chilès, J.-P. and Delfiner, P. (2012). Geostatistics: Modeling Spatial Uncertainty, 2nd ed. Wiley Series in Probability and Statistics. Wiley, Hoboken, NJ.
  • Fuentes, M. (2002). Spectral methods for nonstationary spatial processes. Biometrika 89 197–210.
  • Gneiting, T., Ševčíková, H., Percival, D. B., Schlather, M. and Jiang, Y. (2006). Fast and exact simulation of large Gaussian lattice systems in $\mathbb{R}^{2}$: Exploring the limits. J. Comput. Graph. Statist. 15 483–501.
  • Gramacy, R. B. and Lee, H. K. H. (2008). Bayesian treed Gaussian process models with an application to computer modeling. J. Amer. Statist. Assoc. 103 1119–1130.
  • Gramacy, R. B. and Lee, H. K. H. (2009). Adaptive design and analysis of supercomputer experiments. Technometrics 51 130–145.
  • Joseph, V. R. (2012). Bayesian computation using design of experiments-based interpolation technique. Technometrics 54 209–225.
  • Sacks, J. and Ylvisaker, D. (1970). Statistical designs and integral approximation. In Proc. Twelfth Biennial Sem. Canad. Math. Congr. on Time Series and Stochastic Processes; Convexity and Combinatorics (Vancouver, B.C., 1969) 115–136. Canad. Math. Congr., Montreal, QC.
  • Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. (1989). Design and analysis of computer experiments. Statist. Sci. 4 409–435.
  • Sampson, P. D. and Guttorp, P. (1992). Nonparametric estimation of nonstationary spatial covariance structure. J. Amer. Statist. Assoc. 87 108–119.
  • Zhu, Z. and Stein, M. L. (2006). Spatial sampling design for prediction with estimated parameters. J. Agric. Biol. Environ. Sci. 11 24–44.

See also

  • Main article: Probabilistic Integration: A Role in Statistical Computation?.