Statistical Science

Rejoinder: A Review of Self-Exciting Spatio-Temporal Point Processes and Their Applications

Alex Reinhart

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Statist. Sci., Volume 33, Number 3 (2018), 330-333.

Dates
First available in Project Euclid: 13 August 2018

Permanent link to this document
https://projecteuclid.org/euclid.ss/1534147226

Digital Object Identifier
doi:10.1214/18-STS654

Mathematical Reviews number (MathSciNet)
MR3843379

Zentralblatt MATH identifier
06991123

Citation

Reinhart, Alex. Rejoinder: A Review of Self-Exciting Spatio-Temporal Point Processes and Their Applications. Statist. Sci. 33 (2018), no. 3, 330--333. doi:10.1214/18-STS654. https://projecteuclid.org/euclid.ss/1534147226


Export citation

References

  • Achab, M., Bacry, E., Gaïffas, S., Mastromatteo, I. and Muzy, J.-F. (2017). Uncovering causality from multivariate Hawkes integrated cumulants. In Proceedings of the 34th International Conference on Machine Learning 70.
  • Chen, S., Witten, D. and Shojaie, A. (2017). Nearly assumptionless screening for the mutually-exciting multivariate Hawkes process. Electron. J. Stat. 11 1207–1234.
  • Eichler, M., Dahlhaus, R. and Dueck, J. (2017). Graphical modeling for multivariate Hawkes processes with nonparametric link functions. J. Time Series Anal. 38 225–242.
  • Mohler, G. O. (2014). Marked point process hotspot maps for homicide and gun crime prediction in Chicago. Int. J. Forecast. 30 491–497. DOI:10.1016/j.ijforecast.2014.01.004.
  • Oates, C. J. (2015). Accelerated non-parametrics for cascades of Poisson processes. Stat 4 183–195.
  • Ogata, Y., Matsu’ura, R. S. and Katsura, K. (1993). Fast likelihood computation of epidemic type aftershock-sequence model. Geophys. Res. Lett. 20 2143–2146. DOI:10.1029/93gl02142.
  • Xu, H., Farajtabar, M. and Zha, H. (2016). Learning granger causality for Hawkes processes. In Proceedings of the 33rd International Conference on Machine Learning (M. F. Balcan and K. Q. Weinberger, eds.). Proceedings of Machine Learning Research 48 1717–1726. PMLR, New York.
  • Zhuang, J. (2006). Second-order residual analysis of spatiotemporal point processes and applications in model evaluation. J. R. Stat. Soc. Ser. B. Stat. Methodol. 68 635–653.
  • Zhuang, J., Ogata, Y. and Vere-Jones, D. (2004). Analyzing earthquake clustering features by using stochastic reconstruction. J. Geophys. Res. 109 B05301. DOI:10.1029/2003JB002879.

See also

  • Main article: A Review of Self-Exciting Spatio-Temporal Point Processes and Their Applications.