Statistical Science

Comment on “A Review of Self-Exciting Spatiotemporal Point Process and Their Applications” by Alex Reinhart

Yosihiko Ogata

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In my discussion, I would like to comment on our early reactions to Hawkes’ enlightening paper on the self-exciting model; further, I would like to comment on developments of the extended models with some applications.

Article information

Source
Statist. Sci., Volume 33, Number 3 (2018), 319-322.

Dates
First available in Project Euclid: 13 August 2018

Permanent link to this document
https://projecteuclid.org/euclid.ss/1534147222

Digital Object Identifier
doi:10.1214/18-STS650

Mathematical Reviews number (MathSciNet)
MR3843375

Zentralblatt MATH identifier
06991119

Keywords
Akaike Bayesian Information Criterion (ABIC) Akaike information criterion (AIC) causality analysis conditional intensity function empirical Bayesian method epidemic-type aftershock sequence (ETAS) model hierarchical space-time ETAS (HIST-ETAS) model maximum-likelihood method penalized log-likelihood statistical seismology study of earthquake predictability thinning simulation method

Citation

Ogata, Yosihiko. Comment on “A Review of Self-Exciting Spatiotemporal Point Process and Their Applications” by Alex Reinhart. Statist. Sci. 33 (2018), no. 3, 319--322. doi:10.1214/18-STS650. https://projecteuclid.org/euclid.ss/1534147222


Export citation

References

  • Adamopoulos, L. (1976). Cluster models for earthquakes: Regional comparisons. Math. Geol. 8 463–475.
  • Akaike, H. (1980). Likelihood and the Bayes procedure. In Bayesian Statistics (Valencia, 1979) 143–166. Univ. Press, Valencia.
  • Cox, D. R. and Lewis, P. A. W. (1966). The Statistical Analysis of Series of Events. Methuen & Co., Ltd., London.
  • Fletcher, R. and Powell, M. J. D. (1963/1964). A rapidly convergent descent method for minimization. Comput. J. 6 163–168.
  • Good, I. J. and Gaskins, R. A. (1971). Nonparametric roughness penalties for probability densities. Biometrika 58 255–277.
  • Hainzl, S. and Ogata, Y. (2005). Detecting fluid signals in seismicity data through statistical earthquake modeling. J. Geophys. Res. 110 B05S07. DOI:10.1029/2004JB003247.
  • Han, P., Zhuang, J., Hattori, K. and Ogata, Y. (2016). An interdisciplinary approach for earthquake modelling and forecasting. In 2016 Fall Meeting of the American Geophysical Union (AGU), Moscone Center, San Francisco, CA, 13 December 2016 (Oral).
  • Hawkes, A. G. and Adamopoulos, L. (1973). Cluster models for earthquakes—Regional comparisons. Bull. Int. Stat. Inst. 45 454–461.
  • Ogata, Y. (1999). Seismicity analyses through point-process modelling: A review. In Seismicity Patterns, Their Statistical Significance and Physical Meaning (M. Wyss, K. Shimazaki and A. Ito, eds.). Pure and Applied Geophysics 155 471–507. Birkhauser, Basel.
  • Jordan, T. H., Chen, Y. T., Gasparini, P., Madariaga, R. and Marzocchi, W. (2011). Operational earthquake forecasting: State of knowledge and guidelines for utilization. Ann. Geophys. 54 315–391.
  • Kumazawa, T. and Ogata, Y. (2014). Nonstationary ETAS models for nonstandard earthquakes. Ann. Appl. Stat. 8 1825–1852.
  • Kumazawa, T., Ogata, Y., Kimura, K., Maeda, K. and Kobayashi, A. (2016). Background rates of swarm earthquakes that are synchronized with volumetric strain changes. Earth Planet. Sci. Lett. 442 51–60. DOI:10.1016/j.epsl.2016.02.049.
  • Lewis, P. A. W. and Shedler, G. S. (1979). Simulation of nonhomogeneous Poisson processes by thinning. Nav. Res. Logist. Q. 26 403–413.
  • Nishizawa, O., Lei, X. and Nagao, T. (1994). Hazard function analysis of seismo-electric signals in Greece. In Electromagnetic Phenomena Related to Earthquake Prediction (M. Hayakawa and Y. Fujinawa, eds.) 459–474. Terra Publishing Company, Tokyo.
  • Ogata, Y. (1981). On Lewis’ simulation method for point processes. IEEE Trans. Inform. Theory 27 23–31.
  • Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. J. Amer. Statist. Assoc. 83 9–27.
  • Ogata, Y. (2004). Space-time model for regional seismicity and detection of crustal stress changes. J. Geophys. Res. 109 B03308.
  • Ogata, Y. (2011). Significant improvements of the space-time ETAS model for forecasting of accurate baseline seismicity. Earth Planets Space 63 217–229.
  • Ogata, Y. (2013). A prospect of earthquake prediction research. Statist. Sci. 28 521–541.
  • Ogata, Y. (2017). Statistics of earthquake activity: Models and methods for earthquake predictability studies. Annu. Rev. Earth Planet. Sci. 45 497–527. DOI:10.1146/annurev-earth-063016-015918.
  • Ogata, Y. and Akaike, H. (1982). On linear intensity models for mixed doubly stochastic Poisson and self-exciting point processes. J. Roy. Statist. Soc. Ser. B 44 102–107.
  • Ogata, Y., Akaike, H. and Katsura, K. (1982). The application of linear intensity models to the investigation of causal relations between a point process and another stochastic process. Ann. Inst. Statist. Math. 34 373–387.
  • Ogata, Y. and Katsura, K. (1986). Point-process models with linearly parametrized intensity for application to earthquake data. J. Appl. Probab. 23A 291–310.
  • Ogata, Y., Matsu’ura, R. S. and Katsura, K. (1993). Fast likelihood computation of epidemic type aftershock-sequence model. Geophys. Res. Lett. 20 2143–2146.
  • Ogata, Y., Katsura, K., Falcone, G., Nanjo, K. Z. and Zhuang, J. (2013). Comprehensive and topical evaluations of earthquake forecasts in terms of number, time, space, and magnitude. Bull. Seismol. Soc. Am. 103 1692–1708.
  • Ozaki, T. (1979). Maximum likelihood estimation of Hawkes’ self-exciting point processes. Ann. Inst. Statist. Math. 31 145–155.
  • Parzen, E., Tanabe, K. and Kitagawa, G. (eds.) (1998). Selected Papers of Hirotugu Akaike. Springer, New York.
  • Rubin, I. (1972). Regular point processes and their detection. IEEE Trans. Inform. Theory 18 547–557.
  • Utsu, T., Ogata, Y. and Matsu’ura, R. S. (1995). The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth 43 1–33.
  • Vere-Jones, D. (1970). Stochastic models for earthquake occurrence. J. Roy. Statist. Soc. Ser. B 32 1–62.
  • Vere-Jones, D. and Ozaki, T. (1982). Some examples of statistical inference applied to earthquake data. Ann. Inst. Statist. Math. 34 189–207.
  • Wang, T., Zhuang, J., Kato, T. and Bebbington, M. (2013). Assessing the potential improvement in short-term earthquake forecasts from incorporation of GPS data. Geophys. Res. Lett. 40 2631–2635.
  • Whittle, P. (1951). Hypothesis Testing in Times Series Analysis. Almqvist & Wiksells Boktryckeri AB, Uppsala.
  • Zhuang, J., Vere-Jones, D., Guan, H., Ogata, Y. and Ma, L. (2005). Preliminary analysis of observations on the ultra-low frequency electric field in a region around Beijing. Pure Appl. Geophys. 162 1367–1396. DOI:10.1007/s00024-004-2674-3.
  • Zhuang, J., Ogata, Y., Vere-Jones, D., Ma, L. and Guan, H. (2014). Statistical modeling of earthquake occurrences based on external geophysical observations: With an illustrative application to the ultra-low frequency ground electric signals observed in the Beijing region. In Seismic Imaging, Fault Rock Damage and Healing (Y. Li, ed.) 351–376. De Gruyter, Berlin together with Higher Education Press, Beijing.

See also

  • Main article: A Review of Self-Exciting Spatio-Temporal Point Processes and Their Applications.