Statistical Science

Spherical Process Models for Global Spatial Statistics

Jaehong Jeong, Mikyoung Jun, and Marc G. Genton

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Statistical models used in geophysical, environmental, and climate science applications must reflect the curvature of the spatial domain in global data. Over the past few decades, statisticians have developed covariance models that capture the spatial and temporal behavior of these global data sets. Though the geodesic distance is the most natural metric for measuring distance on the surface of a sphere, mathematical limitations have compelled statisticians to use the chordal distance to compute the covariance matrix in many applications instead, which may cause physically unrealistic distortions. Therefore, covariance functions directly defined on a sphere using the geodesic distance are needed. We discuss the issues that arise when dealing with spherical data sets on a global scale and provide references to recent literature. We review the current approaches to building process models on spheres, including the differential operator, the stochastic partial differential equation, the kernel convolution, and the deformation approaches. We illustrate realizations obtained from Gaussian processes with different covariance structures and the use of isotropic and nonstationary covariance models through deformations and geographical indicators for global surface temperature data. To assess the suitability of each method, we compare their log-likelihood values and prediction scores, and we end with a discussion of related research problems.

Article information

Statist. Sci., Volume 32, Number 4 (2017), 501-513.

First available in Project Euclid: 28 November 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Axial symmetry chordal distance geodesic distance nonstationarity smoothness sphere


Jeong, Jaehong; Jun, Mikyoung; Genton, Marc G. Spherical Process Models for Global Spatial Statistics. Statist. Sci. 32 (2017), no. 4, 501--513. doi:10.1214/17-STS620.

Export citation


  • Alegría, A., Caro, S., Bevilacqua, M., Porcu, E. and Clarke, J. (2017a). Estimating covariance functions of multivariate Skew–Gaussian random fields on the sphere. Spat. Stat. To appear. Preprint. Available at arXiv:1612.03341.
  • Alegría, A., Porcu, E., Furrer, R. and Mateu, J. (2017b). Covariance functions for multivariate Gaussian fields evolving temporally over planet earth. Preprint. Available at arXiv:1701.06010.
  • Apanasovich, T. V., Genton, M. G. and Sun, Y. (2012). A valid Matérn class of cross-covariance functions for multivariate random fields with any number of components. J. Amer. Statist. Assoc. 107 180–193.
  • Banerjee, S. (2005). On geodetic distance computations in spatial modeling. Biometrics 61 617–625.
  • Bolin, D. and Lindgren, F. (2011). Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping. Ann. Appl. Stat. 5 523–550.
  • Bradley, J. R., Cressie, N. and Shi, T. (2015). Comparing and selecting spatial predictors using local criteria. TEST 24 1–28.
  • Bradley, J. R., Cressie, N. and Shi, T. (2016). A comparison of spatial predictors when datasets could be very large. Stat. Surv. 10 100–131.
  • Castruccio, S. and Genton, M. G. (2014). Beyond axial symmetry: An improved class of models for global data. Stat 3 48–55.
  • Castruccio, S. and Genton, M. G. (2016). Compressing an ensemble with statistical models: An algorithm for global 3D spatio-temporal temperature. Technometrics 58 319–328.
  • Castruccio, S. and Guinness, J. (2017). An evolutionary spectrum approach to incorporate large-scale geographical descriptors on global processes. J. R. Stat. Soc. Ser. C. Appl. Stat. 66 329–344.
  • Castruccio, S. and Stein, M. L. (2013). Global space–time models for climate ensembles. Ann. Appl. Stat. 7 1593–1611.
  • Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for very large spatial data sets. J. R. Stat. Soc. Ser. B. Stat. Methodol. 70 209–226.
  • Cressie, N. and Wikle, C. K. (2011). Statistics for Spatio-Temporal Data. Wiley, Hoboken, NJ.
  • Das, B. (2000). Global covariance modeling: A deformation approach to anisotropy. Ph.D. thesis, Univ. Washington, Seattle, WA.
  • Du, J., Ma, C. and Li, Y. (2013). Isotropic variogram matrix functions on spheres. Math. Geosci. 45 341–357.
  • Du, J., Leonenko, N., Ma, C. and Shu, H. (2012). Hyperbolic vector random fields with hyperbolic direct and cross covariance functions. Stoch. Anal. Appl. 30 662–674.
  • Fan, M., Paul, D., Lee, T. C. M. and Matsuo, T. (2017). Modeling tangential vector fields on a sphere. J. Amer. Statist. Assoc. To appear. Preprint. Available at arXiv:1612.0806.
  • Gneiting, T. (1998). Simple tests for the validity of correlation function models on the circle. Statist. Probab. Lett. 39 119–122.
  • Gneiting, T. (1999a). Isotropic correlation functions on $d$-dimensional balls. Adv. in Appl. Probab. 31 625–631.
  • Gneiting, T. (1999b). Correlation functions for atmospheric data analysis. Q. J. R. Meteorol. Soc. 125 2449–2464.
  • Gneiting, T. (2002). Nonseparable, stationary covariance functions for space–time data. J. Amer. Statist. Assoc. 97 590–600.
  • Gneiting, T. (2013). Strictly and non-strictly positive definite functions on spheres. Bernoulli 19 1327–1349.
  • Gneiting, T., Kleiber, W. and Schlather, M. (2010). Matérn cross-covariance functions for multivariate random fields. J. Amer. Statist. Assoc. 105 1167–1177.
  • Guinness, J. and Fuentes, M. (2016). Isotropic covariance functions on spheres: Some properties and modeling considerations. J. Multivariate Anal. 143 143–152.
  • Heaton, M. J., Katzfuss, M., Berrett, C. and Nychka, D. W. (2014). Constructing valid spatial processes on the sphere using kernel convolutions. Environmetrics 25 2–15.
  • Higdon, D. (1998). A process-convolution approach to modelling temperatures in the North Atlantic Ocean. Environ. Ecol. Stat. 5 173–190.
  • Hitczenko, M. and Stein, M. L. (2012). Some theory for anisotropic processes on the sphere. Stat. Methodol. 9 211–227.
  • Huang, C., Zhang, H. and Robeson, S. M. (2011). On the validity of commonly used covariance and variogram functions on the sphere. Math. Geosci. 43 721–733.
  • Jeong, J. and Jun, M. (2015a). A class of Matérn-like covariance functions for smooth processes on a sphere. Spat. Stat. 11 1–18.
  • Jeong, J. and Jun, M. (2015b). Covariance models on the surface of a sphere: When does it matter? Stat 4 167–182.
  • Jeong, J., Castruccio, S., Crippa, P. and Genton, M. G. (2017). Reducing storage of global wind ensembles with stochastic generators. Preprint. Available at arXiv:1702.01995.
  • Jones, R. H. (1963). Stochastic processes on a sphere. Ann. Math. Stat. 34 213–218.
  • Jun, M. (2011). Non-stationary cross-covariance models for multivariate processes on a globe. Scand. J. Stat. 38 726–747.
  • Jun, M. (2014). Matérn-based nonstationary cross-covariance models for global processes. J. Multivariate Anal. 128 134–146.
  • Jun, M. and Stein, M. L. (2007). An approach to producing space–time covariance functions on spheres. Technometrics 49 468–479.
  • Jun, M. and Stein, M. L. (2008). Nonstationary covariance models for global data. Ann. Appl. Stat. 2 1271–1289.
  • Kent, J. T. (1982). The Fisher–Bingham distribution on the sphere. J. Roy. Statist. Soc. Ser. B 44 71–80.
  • Kleiber, W. and Nychka, D. (2012). Nonstationary modeling for multivariate spatial processes. J. Multivariate Anal. 112 76–91.
  • Lang, A. and Schwab, C. (2015). Isotropic Gaussian random fields on the sphere: Regularity, fast simulation and stochastic partial differential equations. Ann. Appl. Probab. 25 3047–3094.
  • Li, T.-H. (1999). Multiscale representation and analysis of spherical data by spherical wavelets. SIAM J. Sci. Comput. 21 924–953.
  • Lindgren, F., Rue, H. and Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B. Stat. Methodol. 73 423–498.
  • Ma, C. (2012). Stationary and isotropic vector random fields on spheres. Math. Geosci. 44 765–778.
  • Ma, C. (2013a). Mittag-Leffler vector random fields with Mittag–Leffler direct and cross covariance functions. Ann. Inst. Statist. Math. 65 941–958.
  • Ma, C. (2013b). Student’s $t$ vector random fields with power-law and log-law decaying direct and cross covariances. Stoch. Anal. Appl. 31 167–182.
  • Ma, C. (2015). Isotropic covariance matrix functions on all spheres. Math. Geosci. 47 699–717.
  • Ma, C. (2016a). Isotropic covariance matrix polynomials on spheres. Stoch. Anal. Appl. 34 679–706.
  • Ma, C. (2016b). Stochastic representations of isotropic vector random fields on spheres. Stoch. Anal. Appl. 34 389–403.
  • Ma, C. (2016c). Time varying axially symmetric vector random fields on the sphere. Random Oper. Stoch. Equ. 24 255–266.
  • Ma, C. (2017). Time varying isotropic vector random fields on spheres. J. Theoret. Probab. To appear.
  • Marinucci, D. and Peccati, G. (2011). Random Fields on the Sphere: Representation, Limit Theorems and Cosmological Applications. London Mathematical Society Lecture Note Series 389. Cambridge Univ. Press, Cambridge.
  • North, G. R., Wang, J. and Genton, M. G. (2011). Correlation models for temperature fields. J. Climate 24 5850–5862.
  • Oh, H.-S. and Li, T.-H. (2004). Estimation of global temperature fields from scattered observations by a spherical-wavelet-based spatially adaptive method. J. R. Stat. Soc. Ser. B. Stat. Methodol. 66 221–238.
  • Poppick, A. and Stein, M. L. (2014). Using covariates to model dependence in nonstationary, high-frequency meteorological processes. Environmetrics 25 293–305.
  • Porcu, E., Bevilacqua, M. and Genton, M. G. (2016). Spatio-temporal covariance and cross-covariance functions of the great circle distance on a sphere. J. Amer. Statist. Assoc. 111 888–898.
  • Porcu, E. and Schilling, R. L. (2011). From Schoenberg to Pick-Nevanlinna: Toward a complete picture of the variogram class. Bernoulli 17 441–455.
  • Porcu, E. and Zastavnyi, V. (2011). Characterization theorems for some classes of covariance functions associated to vector valued random fields. J. Multivariate Anal. 102 1293–1301.
  • Sampson, P. D. and Guttorp, P. (1992). Nonparametric estimation of nonstationary spatial covariance structure. J. Amer. Statist. Assoc. 87 108–119.
  • Schaffrin, B. (1993). Biased kriging on the sphere? In Geostatistics Tróia’ 92 (A. Soares, ed.) 121–131. Springer, New York.
  • Schoenberg, I. J. (1942). Positive definite functions on spheres. Duke Math. J. 9 96–108.
  • Schreiner, M. (1997). On a new condition for strictly positive definite functions on spheres. Proc. Amer. Math. Soc. 125 531–539.
  • Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York.
  • Stein, M. L. (2007). Spatial variation of total column ozone on a global scale. Ann. Appl. Stat. 1 191–210.
  • Wahba, G. (1981). Spline interpolation and smoothing on the sphere. SIAM J. Sci. Statist. Comput. 2 5–16.
  • Whittle, P. (1963). Stochastic processes in several dimensions. Bull. Int. Stat. Inst. 40 974–994.
  • Xu, G. and Genton, M. G. (2017). Tukey $g$-and-$h$ random fields. J. Amer. Statist. Assoc. 112 1236–1249.
  • Yadrenko, M. Ĭ. (1983). Spectral Theory of Random Fields. Optimization Software, Inc., Publications Division, New York. Translated from the Russian.
  • Yaglom, A. M. (1987). Correlation Theory of Stationary and Related Random Functions. Vol. I: Basic Results. Springer, New York.
  • Zhang, H. (2004). Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics. J. Amer. Statist. Assoc. 99 250–261.