Open Access
November 2017 Sufficientness Postulates for Gibbs-Type Priors and Hierarchical Generalizations
S. Bacallado, M. Battiston, S. Favaro, L. Trippa
Statist. Sci. 32(4): 487-500 (November 2017). DOI: 10.1214/17-STS619
Abstract

A fundamental problem in Bayesian nonparametrics consists of selecting a prior distribution by assuming that the corresponding predictive probabilities obey certain properties. An early discussion of such a problem, although in a parametric framework, dates back to the seminal work by English philosopher W. E. Johnson, who introduced a noteworthy characterization for the predictive probabilities of the symmetric Dirichlet prior distribution. This is typically referred to as Johnson’s “sufficientness” postulate. In this paper, we review some nonparametric generalizations of Johnson’s postulate for a class of nonparametric priors known as species sampling models. In particular, we revisit and discuss the “sufficientness” postulate for the two parameter Poisson–Dirichlet prior within the more general framework of Gibbs-type priors and their hierarchical generalizations.

References

1.

[1] Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Statist. 2 1152–1174. MR365969 10.1214/aos/1176342871 euclid.aos/1176342871 [1] Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Statist. 2 1152–1174. MR365969 10.1214/aos/1176342871 euclid.aos/1176342871

2.

[2] Arbel, J., Favaro, S., Nipoti, B. and Teh, Y. W. (2017). Bayesian nonparametric inference for discovery probabilities: Credible intervals and large sample asymptotics. Statist. Sinica 27 839–858.[2] Arbel, J., Favaro, S., Nipoti, B. and Teh, Y. W. (2017). Bayesian nonparametric inference for discovery probabilities: Credible intervals and large sample asymptotics. Statist. Sinica 27 839–858.

3.

[3] Bacallado, S., Battiston, M., Favaro, S. and Trippa, L. (2017). Supplement to “Sufficientness postulates for Gibbs-type priors and hierarchical generalizations.”  DOI:10.1214/17-STS619SUPP.[3] Bacallado, S., Battiston, M., Favaro, S. and Trippa, L. (2017). Supplement to “Sufficientness postulates for Gibbs-type priors and hierarchical generalizations.”  DOI:10.1214/17-STS619SUPP.

4.

[4] Bacallado, S., Favaro, S. and Trippa, L. (2013). Bayesian nonparametric analysis of reversible Markov chains. Ann. Statist. 41 870–896.[4] Bacallado, S., Favaro, S. and Trippa, L. (2013). Bayesian nonparametric analysis of reversible Markov chains. Ann. Statist. 41 870–896.

5.

[5] Bacallado, S., Favaro, S. and Trippa, L. (2015). Looking-backward probabilities for Gibbs-type exchangeable random partitions. Bernoulli 21 1–37.[5] Bacallado, S., Favaro, S. and Trippa, L. (2015). Looking-backward probabilities for Gibbs-type exchangeable random partitions. Bernoulli 21 1–37.

6.

[6] Bacallado, S., Favaro, S. and Trippa, L. (2015). Bayesian nonparametric inference for shared species richness in multiple populations. J. Statist. Plann. Inference 166 14–23.[6] Bacallado, S., Favaro, S. and Trippa, L. (2015). Bayesian nonparametric inference for shared species richness in multiple populations. J. Statist. Plann. Inference 166 14–23.

7.

[7] Battiston, M., Favaro, S., Roy, D. M. and Teh, Y. W. (2016). A characterization of product-form exchangeable feature probability functions. Preprint. Available at  arXiv:1607.020661607.02066[7] Battiston, M., Favaro, S., Roy, D. M. and Teh, Y. W. (2016). A characterization of product-form exchangeable feature probability functions. Preprint. Available at  arXiv:1607.020661607.02066

8.

[8] Bertoin, J. (2006). Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics 102. Cambridge Univ. Press, Cambridge.[8] Bertoin, J. (2006). Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics 102. Cambridge Univ. Press, Cambridge.

9.

[9] Blackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via Pólya urn schemes. Ann. Statist. 1 353–355. MR362614 10.1214/aos/1176342372 euclid.aos/1176342372 [9] Blackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via Pólya urn schemes. Ann. Statist. 1 353–355. MR362614 10.1214/aos/1176342372 euclid.aos/1176342372

10.

[10] Broderick, T., Pitman, J. and Jordan, M. I. (2013). Feature allocations, probability functions, and paintboxes. Bayesian Anal. 8 801–836.[10] Broderick, T., Pitman, J. and Jordan, M. I. (2013). Feature allocations, probability functions, and paintboxes. Bayesian Anal. 8 801–836.

11.

[11] Caron, F. (2012). Bayesian nonparametric models for bipartite graphs. In NIPS’12. Proc. 25th International Conference on Neural Information Processing Systems 2051–2059. Curran Associates Inc., Red Hook, NY.[11] Caron, F. (2012). Bayesian nonparametric models for bipartite graphs. In NIPS’12. Proc. 25th International Conference on Neural Information Processing Systems 2051–2059. Curran Associates Inc., Red Hook, NY.

12.

[12] Caron, F. and Fox, E. B. (2015). Sparse graphs with exchangeable random measures. Preprint. Available at  arXiv:1401.11371401.1137[12] Caron, F. and Fox, E. B. (2015). Sparse graphs with exchangeable random measures. Preprint. Available at  arXiv:1401.11371401.1137

13.

[13] Caron, F., Teh, Y. W. and Murphy, T. B. (2014). Bayesian nonparametric Plackett–Luce models for the analysis of preferences for college degree programmes. Ann. Appl. Stat. 8 1145–1181.[13] Caron, F., Teh, Y. W. and Murphy, T. B. (2014). Bayesian nonparametric Plackett–Luce models for the analysis of preferences for college degree programmes. Ann. Appl. Stat. 8 1145–1181.

14.

[14] Chen, C., Ding, N. and Buntine, W. (2012). Dependent hierarchical normalized random measures for dynamic topic modeling. In Proc. 29th International Conference on Machine Learning (ICML-12) 895–902.[14] Chen, C., Ding, N. and Buntine, W. (2012). Dependent hierarchical normalized random measures for dynamic topic modeling. In Proc. 29th International Conference on Machine Learning (ICML-12) 895–902.

15.

[15] Chen, C., Rao, V. A., Buntine, W. and Teh, Y. W. (2013). Dependent normalized random measures. In Proc. 30th International Conference on Machine Learning (ICML-13) 969–977.[15] Chen, C., Rao, V. A., Buntine, W. and Teh, Y. W. (2013). Dependent normalized random measures. In Proc. 30th International Conference on Machine Learning (ICML-13) 969–977.

16.

[16] Crane, H. (2016). The ubiquitous Ewens sampling formula. Statist. Sci. 31 1–19.[16] Crane, H. (2016). The ubiquitous Ewens sampling formula. Statist. Sci. 31 1–19.

17.

[17] de Finetti, B. (1938). Sur la condition d’“équivalence partielle.” In VI Colloque Gèneve: “Act. Sc. Ind.” Herman, Paris.[17] de Finetti, B. (1938). Sur la condition d’“équivalence partielle.” In VI Colloque Gèneve: “Act. Sc. Ind.” Herman, Paris.

18.

[18] De Blasi, P., Favaro, S., Lijoi, A., Mena, R. H., Prünster, I. and Ruggiero, M. (2015). Are Gibbs-type priors the most natural generalization of the Dirichlet process? IEEE Trans. Pattern Anal. Mach. Intell. 37 212–229.[18] De Blasi, P., Favaro, S., Lijoi, A., Mena, R. H., Prünster, I. and Ruggiero, M. (2015). Are Gibbs-type priors the most natural generalization of the Dirichlet process? IEEE Trans. Pattern Anal. Mach. Intell. 37 212–229.

19.

[19] Engen, S. (1978). Stochastic Abundance Models: With Emphasis on Biological Communities and Species Diversity. Chapman & Hall, London.[19] Engen, S. (1978). Stochastic Abundance Models: With Emphasis on Biological Communities and Species Diversity. Chapman & Hall, London.

20.

[20] Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3 87–112. Erratum, ibid. 3 240 (1972); erratum, ibid. 3 376 (1972).[20] Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3 87–112. Erratum, ibid. 3 240 (1972); erratum, ibid. 3 376 (1972).

21.

[21] Favaro, S., Lijoi, A., Mena, R. H. and Prünster, I. (2009). Bayesian non-parametric inference for species variety with a two-parameter Poisson–Dirichlet process prior. J. R. Stat. Soc. Ser. B. Stat. Methodol. 71 993–1008. MR2750254 10.1111/j.1467-9868.2009.00717.x[21] Favaro, S., Lijoi, A., Mena, R. H. and Prünster, I. (2009). Bayesian non-parametric inference for species variety with a two-parameter Poisson–Dirichlet process prior. J. R. Stat. Soc. Ser. B. Stat. Methodol. 71 993–1008. MR2750254 10.1111/j.1467-9868.2009.00717.x

22.

[22] Favaro, S., Lijoi, A. and Prünster, I. (2012). A new estimator of the discovery probability. Biometrics 68 1188–1196.[22] Favaro, S., Lijoi, A. and Prünster, I. (2012). A new estimator of the discovery probability. Biometrics 68 1188–1196.

23.

[23] Favaro, S. and Walker, S. G. (2013). Slice sampling $\sigma$-stable Poisson–Kingman mixture models. J. Comput. Graph. Statist. 22 830–847. MR3173745 10.1080/10618600.2012.681211[23] Favaro, S. and Walker, S. G. (2013). Slice sampling $\sigma$-stable Poisson–Kingman mixture models. J. Comput. Graph. Statist. 22 830–847. MR3173745 10.1080/10618600.2012.681211

24.

[24] Feng, S. and Hoppe, F. M. (1998). Large deviation principles for some random combinatorial structures in population genetics and Brownian motion. Ann. Appl. Probab. 8 975–994.[24] Feng, S. and Hoppe, F. M. (1998). Large deviation principles for some random combinatorial structures in population genetics and Brownian motion. Ann. Appl. Probab. 8 975–994.

25.

[25] Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209–230.[25] Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209–230.

26.

[26] Fisher, R. A., Corbet, A. S. and Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 12 42–58.[26] Fisher, R. A., Corbet, A. S. and Williams, C. B. (1943). The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 12 42–58.

27.

[27] Gnedin, A. and Pitman, J. (2006). Exchangeable Gibbs partitions and Stirling triangles. J. Math. Sci. 138 5674–5685.[27] Gnedin, A. and Pitman, J. (2006). Exchangeable Gibbs partitions and Stirling triangles. J. Math. Sci. 138 5674–5685.

28.

[28] Good, I. J. (1965). The Estimation of Probabilities. An Essay on Modern Bayesian Methods. Research Monograph 30. MIT Press, Cambridge, MA.[28] Good, I. J. (1965). The Estimation of Probabilities. An Essay on Modern Bayesian Methods. Research Monograph 30. MIT Press, Cambridge, MA.

29.

[29] Heaukulani, C. and Roy, D. M. (2015). Gibbs-type Indian buffet processes. Preprint. Available at  arXiv:1512.025431512.02543[29] Heaukulani, C. and Roy, D. M. (2015). Gibbs-type Indian buffet processes. Preprint. Available at  arXiv:1512.025431512.02543

30.

[30] Herlau, T. (2015). Completely random measures for modeling block-structured sparse networks. Preprint. Available at  arXiv:1507.029251507.02925[30] Herlau, T. (2015). Completely random measures for modeling block-structured sparse networks. Preprint. Available at  arXiv:1507.029251507.02925

31.

[31] Hjort, N. L. (2000). Bayesian analysis for a generalised Dirichlet process prior Technical report, Matematisk Institutt, Universitetet i Oslo.[31] Hjort, N. L. (2000). Bayesian analysis for a generalised Dirichlet process prior Technical report, Matematisk Institutt, Universitetet i Oslo.

32.

[32] Ho, M., James, L. F. and Lau, J. W. (2007). Gibbs partitions (EPPF’s) derived from a stable subordinator are Fox H and Meijer G transforms. Preprint. Available at  arXiv:0708.06190708.0619[32] Ho, M., James, L. F. and Lau, J. W. (2007). Gibbs partitions (EPPF’s) derived from a stable subordinator are Fox H and Meijer G transforms. Preprint. Available at  arXiv:0708.06190708.0619

33.

[33] Hoppe, F. M. (1984). Pólya-like urns and the Ewens’ sampling formula. J. Math. Biol. 20 91–94.[33] Hoppe, F. M. (1984). Pólya-like urns and the Ewens’ sampling formula. J. Math. Biol. 20 91–94.

34.

[34] Ishwaran, H. and James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. J. Amer. Statist. Assoc. 96 161–173.[34] Ishwaran, H. and James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. J. Amer. Statist. Assoc. 96 161–173.

35.

[35] James, L. F. (2002). Poisson process partition calculus with applications to exchangeable models and Bayesian nonparametrics. Preprint. Available at  arXiv:math/0205093.[35] James, L. F. (2002). Poisson process partition calculus with applications to exchangeable models and Bayesian nonparametrics. Preprint. Available at  arXiv:math/0205093.

36.

[36] James, L. F. (2013). Stick-breaking $\operatorname{PG}(\alpha,\zeta)$-generalized Gamma processes. Preprint. Available at  arXiv:1308.65701308.6570[36] James, L. F. (2013). Stick-breaking $\operatorname{PG}(\alpha,\zeta)$-generalized Gamma processes. Preprint. Available at  arXiv:1308.65701308.6570

37.

[37] Jo, S., Lee, J., Müller, P., Quintana, F. A. and Trippa, L. (2017). Dependent species sampling models for spatial density estimation. Bayesian Anal. 12 379–406.[37] Jo, S., Lee, J., Müller, P., Quintana, F. A. and Trippa, L. (2017). Dependent species sampling models for spatial density estimation. Bayesian Anal. 12 379–406.

38.

[38] Johnson, W. E. (1932). Probability: The deductive and inductive problems. Mind 41 409–423.[38] Johnson, W. E. (1932). Probability: The deductive and inductive problems. Mind 41 409–423.

39.

[39] Kingman, J. F. C. (1978). The representation of partition structures. J. Lond. Math. Soc. (2) 18 374–380.[39] Kingman, J. F. C. (1978). The representation of partition structures. J. Lond. Math. Soc. (2) 18 374–380.

40.

[40] Korwar, R. M. and Hollander, M. (1973). Contributions to the theory of Dirichlet processes. Ann. Probab. 1 705–711.[40] Korwar, R. M. and Hollander, M. (1973). Contributions to the theory of Dirichlet processes. Ann. Probab. 1 705–711.

41.

[41] Lee, J., Quintana, F. A., Müller, P. and Trippa, L. (2013). Defining predictive probability functions for species sampling models. Statist. Sci. 28 209–222.[41] Lee, J., Quintana, F. A., Müller, P. and Trippa, L. (2013). Defining predictive probability functions for species sampling models. Statist. Sci. 28 209–222.

42.

[42] Lijoi, A., Mena, R. H. and Prünster, I. (2005). Hierarchical mixture modeling with normalized inverse-Gaussian priors. J. Amer. Statist. Assoc. 100 1278–1291.[42] Lijoi, A., Mena, R. H. and Prünster, I. (2005). Hierarchical mixture modeling with normalized inverse-Gaussian priors. J. Amer. Statist. Assoc. 100 1278–1291.

43.

[43] Lijoi, A., Mena, R. H. and Prünster, I. (2007). Bayesian nonparametric estimation of the probability of discovering new species. Biometrika 94 769–786.[43] Lijoi, A., Mena, R. H. and Prünster, I. (2007). Bayesian nonparametric estimation of the probability of discovering new species. Biometrika 94 769–786.

44.

[44] Lijoi, A., Mena, R. H. and Prünster, I. (2007). Controlling the reinforcement in Bayesian non-parametric mixture models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 69 715–740.[44] Lijoi, A., Mena, R. H. and Prünster, I. (2007). Controlling the reinforcement in Bayesian non-parametric mixture models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 69 715–740.

45.

[45] Lijoi, A. and Prünster, I. (2010). Models beyond the Dirichlet process. In Bayesian Nonparametrics. Camb. Ser. Stat. Probab. Math. 28 80–136. Cambridge Univ. Press, Cambridge.[45] Lijoi, A. and Prünster, I. (2010). Models beyond the Dirichlet process. In Bayesian Nonparametrics. Camb. Ser. Stat. Probab. Math. 28 80–136. Cambridge Univ. Press, Cambridge.

46.

[46] Lijoi, A., Prünster, I. and Walker, S. G. (2008). Investigating nonparametric priors with Gibbs structure. Statist. Sinica 18 1653–1668.[46] Lijoi, A., Prünster, I. and Walker, S. G. (2008). Investigating nonparametric priors with Gibbs structure. Statist. Sinica 18 1653–1668.

47.

[47] Lijoi, A., Prünster, I. and Walker, S. G. (2008). Bayesian nonparametric estimators derived from conditional Gibbs structures. Ann. Appl. Probab. 18 1519–1547.[47] Lijoi, A., Prünster, I. and Walker, S. G. (2008). Bayesian nonparametric estimators derived from conditional Gibbs structures. Ann. Appl. Probab. 18 1519–1547.

48.

[48] Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates. I. Density estimates. Ann. Statist. 12 351–357.[48] Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates. I. Density estimates. Ann. Statist. 12 351–357.

49.

[49] Lo, A. Y. (1991). A characterization of the Dirichlet process. Statist. Probab. Lett. 12 185–187. MR1130354 10.1016/0167-7152(91)90075-3[49] Lo, A. Y. (1991). A characterization of the Dirichlet process. Statist. Probab. Lett. 12 185–187. MR1130354 10.1016/0167-7152(91)90075-3

50.

[50] Lomelí, M., Favaro, S. and Teh, Y. W. (2017). A marginal sampler for $\sigma$-stable Poisson–Kingman mixture models. J. Comput. Graph. Statist. 26 44–53.[50] Lomelí, M., Favaro, S. and Teh, Y. W. (2017). A marginal sampler for $\sigma$-stable Poisson–Kingman mixture models. J. Comput. Graph. Statist. 26 44–53.

51.

[51] Perman, M., Pitman, J. and Yor, M. (1992). Size-biased sampling of Poisson point processes and excursions. Probab. Theory Related Fields 92 21–39.[51] Perman, M., Pitman, J. and Yor, M. (1992). Size-biased sampling of Poisson point processes and excursions. Probab. Theory Related Fields 92 21–39.

52.

[52] Pitman, J. (1995). Exchangeable and partially exchangeable random partitions. Probab. Theory Related Fields 102 145–158.[52] Pitman, J. (1995). Exchangeable and partially exchangeable random partitions. Probab. Theory Related Fields 102 145–158.

53.

[53] Pitman, J. (1996). Some developments of the Blackwell–MacQueen urn scheme. In Statistics, Probability and Game Theory. Institute of Mathematical Statistics Lecture Notes—Monograph Series 30 245–267. IMS, Hayward, CA.[53] Pitman, J. (1996). Some developments of the Blackwell–MacQueen urn scheme. In Statistics, Probability and Game Theory. Institute of Mathematical Statistics Lecture Notes—Monograph Series 30 245–267. IMS, Hayward, CA.

54.

[54] Pitman, J. (2003). Poisson–Kingman partitions. In Statistics and Science: A Festschrift for Terry Speed. Institute of Mathematical Statistics Lecture Notes—Monograph Series 40 1–34. IMS, Beachwood, OH.[54] Pitman, J. (2003). Poisson–Kingman partitions. In Statistics and Science: A Festschrift for Terry Speed. Institute of Mathematical Statistics Lecture Notes—Monograph Series 40 1–34. IMS, Beachwood, OH.

55.

[55] Pitman, J. (2006). Combinatorial Stochastic Processes. Lecture Notes in Math. 1875. Springer, Berlin. Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7–24, 2002, with a foreword by Jean Picard.[55] Pitman, J. (2006). Combinatorial Stochastic Processes. Lecture Notes in Math. 1875. Springer, Berlin. Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7–24, 2002, with a foreword by Jean Picard.

56.

[56] Pitman, J. and Yor, M. (1997). The two-parameter Poisson–Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25 855–900.[56] Pitman, J. and Yor, M. (1997). The two-parameter Poisson–Dirichlet distribution derived from a stable subordinator. Ann. Probab. 25 855–900.

57.

[57] Prünster, I. (2002). Random probability measures derived from increasing additive processes and their application to Bayesian statistics Ph.D. thesis, Univ. Pavia.[57] Prünster, I. (2002). Random probability measures derived from increasing additive processes and their application to Bayesian statistics Ph.D. thesis, Univ. Pavia.

58.

[58] Quintana, F. A. and Iglesias, P. L. (2003). Bayesian clustering and product partition models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 65 557–574.[58] Quintana, F. A. and Iglesias, P. L. (2003). Bayesian clustering and product partition models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 65 557–574.

59.

[59] Ravel, J., Gajer, P., Abdo, Z., Schneider, G. M., Koenig, S. S., McCulle, S. L., Karlebach, S., Gorle, R., Russell, J., Tacket, C. O., Brotman, R. M., Davis, C. C., Ault, K., Peralta, L. and Forney, L. J. (2011). Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 108 4680–4687.[59] Ravel, J., Gajer, P., Abdo, Z., Schneider, G. M., Koenig, S. S., McCulle, S. L., Karlebach, S., Gorle, R., Russell, J., Tacket, C. O., Brotman, R. M., Davis, C. C., Ault, K., Peralta, L. and Forney, L. J. (2011). Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 108 4680–4687.

60.

[60] Regazzini, E. (1978). Intorno ad alcune questioni relative alla definizione del premio secondo la teoria della credibilià. G. Ist. Ital. Attuari 41 77–89.[60] Regazzini, E. (1978). Intorno ad alcune questioni relative alla definizione del premio secondo la teoria della credibilià. G. Ist. Ital. Attuari 41 77–89.

61.

[61] Regazzini, E., Lijoi, A. and Prünster, I. (2003). Distributional results for means of normalized random measures with independent increments. Ann. Statist. 31 560–585.[61] Regazzini, E., Lijoi, A. and Prünster, I. (2003). Distributional results for means of normalized random measures with independent increments. Ann. Statist. 31 560–585.

62.

[62] Rolles, S. W. W. (2003). How edge-reinforced random walk arises naturally. Probab. Theory Related Fields 126 243–260.[62] Rolles, S. W. W. (2003). How edge-reinforced random walk arises naturally. Probab. Theory Related Fields 126 243–260.

63.

[63] Roy, D. M. (2014). The continuum-of-urns scheme, generalized beta and Indian buffet processes, and hierarchies thereof. Preprint. Available at  arXiv:1501.002081501.00208[63] Roy, D. M. (2014). The continuum-of-urns scheme, generalized beta and Indian buffet processes, and hierarchies thereof. Preprint. Available at  arXiv:1501.002081501.00208

64.

[64] Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge Univ. Press, Cambridge. Translated from the 1990 Japanese original, revised by the author.[64] Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge Univ. Press, Cambridge. Translated from the 1990 Japanese original, revised by the author.

65.

[65] Teh, Y. W. (2006). A hierarchical Bayesian language model based on Pitman–Yor processes. In Proceedings of the 21st International Conference on Computational Linguistic.[65] Teh, Y. W. (2006). A hierarchical Bayesian language model based on Pitman–Yor processes. In Proceedings of the 21st International Conference on Computational Linguistic.

66.

[66] Teh, Y. W. and Görür (2010). Indian buffet processes with power-law behavior. In NIPS’09. Proc. 22nd International Conference on Neural Information Processing Systems 1838–1846. Curran Associates Inc., Red Hook, NY.[66] Teh, Y. W. and Görür (2010). Indian buffet processes with power-law behavior. In NIPS’09. Proc. 22nd International Conference on Neural Information Processing Systems 1838–1846. Curran Associates Inc., Red Hook, NY.

67.

[67] Teh, Y. W. and Jordan, M. I. (2010). Hierarchical Bayesian nonparametric models with applications. In Bayesian Nonparametrics. Camb. Ser. Stat. Probab. Math. 28 158–207. Cambridge Univ. Press, Cambridge.[67] Teh, Y. W. and Jordan, M. I. (2010). Hierarchical Bayesian nonparametric models with applications. In Bayesian Nonparametrics. Camb. Ser. Stat. Probab. Math. 28 158–207. Cambridge Univ. Press, Cambridge.

68.

[68] Teh, Y. W., Jordan, M. I., Beal, M. J. and Blei, D. M. (2006). Hierarchical Dirichlet processes. J. Amer. Statist. Assoc. 101 1566–1581.[68] Teh, Y. W., Jordan, M. I., Beal, M. J. and Blei, D. M. (2006). Hierarchical Dirichlet processes. J. Amer. Statist. Assoc. 101 1566–1581.

69.

[69] Walker, S. and Muliere, P. (1999). A characterization of a neutral to the right prior via an extension of Johnson’s sufficientness postulate. Ann. Statist. 27 589–599.[69] Walker, S. and Muliere, P. (1999). A characterization of a neutral to the right prior via an extension of Johnson’s sufficientness postulate. Ann. Statist. 27 589–599.

70.

[70] Watterson, G. A. (1976). The stationary distribution of the infinitely-many neutral alleles diffusion model. J. Appl. Probab. 13 639–651.[70] Watterson, G. A. (1976). The stationary distribution of the infinitely-many neutral alleles diffusion model. J. Appl. Probab. 13 639–651.

71.

[71] Zabell, S. L. (1982). W. E. Johnson’s “sufficientness” postulate. Ann. Statist. 10 1090–1099 (1 plate).[71] Zabell, S. L. (1982). W. E. Johnson’s “sufficientness” postulate. Ann. Statist. 10 1090–1099 (1 plate).

72.

[72] Zabell, S. L. (1992). Predicting the unpredictable. Synthese 90 205–232.[72] Zabell, S. L. (1992). Predicting the unpredictable. Synthese 90 205–232.

73.

[73] Zabell, S. L. (1995). Characterizing Markov exchangeable sequences. J. Theoret. Probab. 8 175–178.[73] Zabell, S. L. (1995). Characterizing Markov exchangeable sequences. J. Theoret. Probab. 8 175–178.

74.

[74] Zabell, S. L. (1997). The continuum of inductive methods revisited. In The Cosmos of Science: Essays in Exploration (J. Earman and J. D. Norton, eds.) Univ. Pittsburgh Press, Pittsburgh, PA.[74] Zabell, S. L. (1997). The continuum of inductive methods revisited. In The Cosmos of Science: Essays in Exploration (J. Earman and J. D. Norton, eds.) Univ. Pittsburgh Press, Pittsburgh, PA.

75.

[75] Zabell, S. L. (2005). Symmetry and Its Discontents: Essays on the History of Inductive Probability. Cambridge Univ. Press, New York.[75] Zabell, S. L. (2005). Symmetry and Its Discontents: Essays on the History of Inductive Probability. Cambridge Univ. Press, New York.
Copyright © 2017 Institute of Mathematical Statistics
S. Bacallado, M. Battiston, S. Favaro, and L. Trippa "Sufficientness Postulates for Gibbs-Type Priors and Hierarchical Generalizations," Statistical Science 32(4), 487-500, (November 2017). https://doi.org/10.1214/17-STS619
Published: November 2017
Vol.32 • No. 4 • November 2017
Back to Top