Statistical Science

A Review of Nonparametric Hypothesis Tests of Isotropy Properties in Spatial Data

Zachary D. Weller and Jennifer A. Hoeting

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


An important aspect of modeling spatially referenced data is appropriately specifying the covariance function of the random field. A practitioner working with spatial data is presented a number of choices regarding the structure of the dependence between observations. One of these choices is to determine whether or not an isotropic covariance function is appropriate. Isotropy implies that spatial dependence does not depend on the direction of the spatial separation between sampling locations. Misspecification of isotropy properties (directional dependence) can lead to misleading inferences, for example, inaccurate predictions and parameter estimates. A researcher may use graphical diagnostics, such as directional sample variograms, to decide whether the assumption of isotropy is reasonable. These graphical techniques can be difficult to assess, open to subjective interpretations, and misleading. Hypothesis tests of the assumption of isotropy may be more desirable. To this end, a number of tests of directional dependence have been developed using both the spatial and spectral representations of random fields. We provide an overview of nonparametric methods available to test the hypotheses of isotropy and symmetry in spatial data. We discuss important considerations in choosing a test, provide recommendations for implementing a test, compare several of the methods via a simulation study, and propose a number of open research questions. Several of the reviewed methods can be implemented in R using our package spTest, available on CRAN.

Article information

Statist. Sci., Volume 31, Number 3 (2016), 305-324.

First available in Project Euclid: 27 September 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Isotropy symmetry nonparametric spatial covariance


Weller, Zachary D.; Hoeting, Jennifer A. A Review of Nonparametric Hypothesis Tests of Isotropy Properties in Spatial Data. Statist. Sci. 31 (2016), no. 3, 305--324. doi:10.1214/16-STS547.

Export citation


  • Baczkowski, A. J. (1990). A test of spatial isotropy. In Compstat 277–282. Springer, Berlin.
  • Baczkowski, A. J. and Mardia, K. V. (1987). Approximate lognormality of the sample semivariogram under a Gaussian process. Comm. Statist. Simulation Comput. 16 571–585.
  • Baczkowski, A. J. and Mardia, K. V. (1990). A test of spatial symmetry with general application. Comm. Statist. Theory Methods 19 555–572.
  • Bandyopadhyay, S., Lahiri, S. N. and Nordman, D. J. (2015). A frequency domain empirical likelihood method for irregularly spaced spatial data. Ann. Statist. 43 519–545.
  • Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2014). Hierarchical Modeling and Analysis for Spatial Data. CRC Press, Boca Raton, FL.
  • Borgman, L. and Chao, L. (1994). Estimation of a multidimensional covariance function in case of anisotropy. Math. Geol. 26 161–179.
  • Bowman, A. W. and Azzalini, A. (2014). R package sm: Nonparametric smoothing methods (version 2.2-5.4), Univ. Glasgow, UK and Univ. di Padova, Italia.
  • Bowman, A. W. and Crujeiras, R. M. (2013). Inference for variograms. Comput. Statist. Data Anal. 66 19–31.
  • Cabaña, E. M. (1987). Affine processes: A test of isotropy based on level sets. SIAM J. Appl. Math. 47 886–891.
  • Chorti, A. and Hristopulos, D. T. (2008). Nonparametric identification of anisotropic (elliptic) correlations in spatially distributed data sets. IEEE Trans. Signal Process. 56 4738–4751.
  • Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley, New York.
  • Ecker, M. D. and Gelfand, A. E. (1999). Bayesian modeling and inference for geometrically anisotropic spatial data. Math. Geol. 31 67–83.
  • Ecker, M. D. and Gelfand, A. E. (2003). Spatial modeling and predication under stationary non-geometric range anisotropy. Environ. Ecol. Stat. 10 165–178.
  • Fuentes, M. (2005). A formal test for nonstationarity of spatial stochastic processes. J. Multivariate Anal. 96 30–54.
  • Fuentes, M. (2006). Testing for separability of spatial–temporal covariance functions. J. Statist. Plann. Inference 136 447–466.
  • Fuentes, M. (2007). Approximate likelihood for large irregularly spaced spatial data. J. Amer. Statist. Assoc. 102 321–331.
  • Fuentes, M. (2013). Spectral methods. Wiley StatsRef: Statistics Reference Online.
  • Fuentes, M. and Reich, B. (2010). Spectral domain. In Handbook of Spatial Statistics 55–77. CRC Press, Boca Raton, FL.
  • García-Soidán, P. (2007). Asymptotic normality of the Nadaraya–Watson semivariogram estimators. TEST 16 479–503.
  • García-Soidán, P. H., Febrero-Bande, M. and González-Manteiga, W. (2004). Nonparametric kernel estimation of an isotropic variogram. J. Statist. Plann. Inference 121 65–92.
  • Gneiting, T., Genton, M. and Guttorp, P. (2007). Geostatistical space–time models, stationarity, separability and full symmetry. In Statistical Methods for Spatio-Temporal Systems 151–175. Chapman & Hall/CRC Press, Boca Raton, FL.
  • Guan, Y., Sherman, M. and Calvin, J. A. (2004). A nonparametric test for spatial isotropy using subsampling. J. Amer. Statist. Assoc. 99 810–821.
  • Guan, Y., Sherman, M. and Calvin, J. A. (2006). Assessing isotropy for spatial point processes. Biometrics 62 119–125, 316.
  • Guan, Y., Sherman, M. and Calvin, J. A. (2007). On asymptotic properties of the mark variogram estimator of a marked point process. J. Statist. Plann. Inference 137 148–161.
  • Guan, Y. T. (2003). Nonparametric methods of assessing spatial isotropy. Ph.D. thesis, Texas A&M Univ., College Station, TX.
  • Hall, P. and Patil, P. (1994). Properties of nonparametric estimators of autocovariance for stationary random fields. Probab. Theory Related Fields 99 399–424.
  • Haskard, K. A. (2007). An anisotropic Matérn spatial covariance model: REML estimation and properties. Ph.D. thesis, Univ. Adelaide.
  • Irvine, K. M., Gitelman, A. I. and Hoeting, J. A. (2007). Spatial designs and properties of spatial correlation: Effects on covariance estimation. J. Agric. Biol. Environ. Stat. 12 450–469.
  • Isaaks, E. H. and Srivastava, R. M. (1989). Applied Geostatistics, Vol. 2. Oxford Univ. Press, New York.
  • Jona-Lasinio, G. (2001). Modeling and exploring multivariate spatial variation: A test procedure for isotropy of multivariate spatial data. J. Multivariate Anal. 77 295–317.
  • Journel, A. G. and Huijbregts, C. J. (1978). Mining Geostatistics. Academic Press, New York.
  • Jun, M. and Genton, M. G. (2012). A test for stationarity of spatio-temporal random fields on planar and spherical domains. Statist. Sinica 22 1737–1764.
  • Kim, T. Y. and Park, J. (2012). On nonparametric variogram estimation. J. Korean Statist. Soc. 41 399–413.
  • Lahiri, S. N. (2003). Resampling Methods for Dependent Data. Springer, New York.
  • Lahiri, S. N. and Zhu, J. (2006). Resampling methods for spatial regression models under a class of stochastic designs. Ann. Statist. 34 1774–1813.
  • Li, B., Genton, M. G. and Sherman, M. (2007). A nonparametric assessment of properties of space–time covariance functions. J. Amer. Statist. Assoc. 102 736–744.
  • Li, B., Genton, M. G. and Sherman, M. (2008a). Testing the covariance structure of multivariate random fields. Biometrika 95 813–829.
  • Li, B., Genton, M. G. and Sherman, M. (2008b). On the asymptotic joint distribution of sample space–time covariance estimators. Bernoulli 14 228–248.
  • Lu, H. (1994). On the distributions of the sample covariogram and semivariogram and their use in testing for isotropy. Ph.D. thesis, Univ. Iowa.
  • Lu, H. and Zimmerman, D. L. (2001). Testing for isotropy and other directional symmetry properties of spatial correlation. Preprint.
  • Lu, N. and Zimmerman, D. L. (2005). Testing for directional symmetry in spatial dependence using the periodogram. J. Statist. Plann. Inference 129 369–385.
  • Maity, A. and Sherman, M. (2012). Testing for spatial isotropy under general designs. J. Statist. Plann. Inference 142 1081–1091.
  • Matheron, G. (1961). Precision of exploring a stratified formation by boreholes with rigid spacing-application to a bauxite deposit. In International Symposium of Mining Research, University of Missouri, Vol. 1 (G. B. Clark, ed.) 407–22. Pergamon Press, Oxford.
  • Matheron, G. (1962). Traité de géostatistique appliquée 1. Technip, Paris.
  • Matsuda, Y. and Yajima, Y. (2009). Fourier analysis of irregularly spaced data on $\mathbb{R}^{d}$. J. R. Stat. Soc. Ser. B. Stat. Methodol. 71 191–217.
  • Modjeska, J. S. and Rawlings, J. O. (1983). Spatial correlation analysis of uniformity data. Biometrics 373–384.
  • Molina, A. and Feito, F. R. (2002). A method for testing anisotropy and quantifying its direction in digital images. Computers & Graphics 26 771–784.
  • Nadaraya, E. A. (1964). On estimating regression. Theory of Probability & Its Applications 9 141–142.
  • Nicolis, O., Mateu, J. and D’Ercole, R. (2010). Testing for anisotropy in spatial point processes. In Proceedings of the Fifth International Workshop on Spatio-Temporal Modelling 1990–2010. Publisher Unidixital, Santiago de Compostela.
  • Pagano, M. (1971). Some asymptotic properties of a two-dimensional periodogram. J. Appl. Probab. 8 841–847.
  • Park, M. S. and Fuentes, M. (2008). Testing lack of symmetry in spatial–temporal processes. J. Statist. Plann. Inference 138 2847–2866.
  • Politis, D. N. and Sherman, M. (2001). Moment estimation for statistics from marked point processes. J. R. Stat. Soc. Ser. B. Stat. Methodol. 63 261–275.
  • Possolo, A. (1991). Subsampling a random field. In Spatial Statistics and Imaging (Brunswick, ME, 1988). Institute of Mathematical Statistics Lecture Notes—Monograph Series 20 286–294. IMS, Hayward, CA.
  • Priestley, M. B. (1981). Spectral Analysis and Time Series. Academic Press, New York.
  • Priestley, M. B. and Subba Rao, T. (1969). A test for non-stationarity of time-series. J. R. Stat. Soc. Ser. B. Stat. Methodol. 31 140–149.
  • R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Scaccia, L. and Martin, R. J. (2002). Testing for simplification in spatial models. In COMPSTAT 2002 (Berlin) 581–586. Physica, Heidelberg.
  • Scaccia, L. and Martin, R. J. (2005). Testing axial symmetry and separability of lattice processes. J. Statist. Plann. Inference 131 19–39.
  • Scaccia, L. and Martin, R. J. (2011). Model-based tests for simplification of lattice processes. J. Stat. Comput. Simul. 81 89–107.
  • Schabenberger, O. and Gotway, C. A. (2004). Statistical Methods for Spatial Data Analysis. CRC Press, Boca Raton, FL.
  • Shao, X. and Li, B. (2009). A tuning parameter free test for properties of space–time covariance functions. J. Statist. Plann. Inference 139 4031–4038.
  • Sherman, M. (1996). Variance estimation for statistics computed from spatial lattice data. J. R. Stat. Soc. Ser. B. Stat. Methodol. 58 509–523.
  • Sherman, M. (2011). Spatial Statistics and Spatio-Temporal Data: Covariance Functions and Directional Properties. Wiley, Chichester.
  • Spiliopoulos, I., Hristopulos, D. T., Petrakis, M. P. and Chorti, A. (2011). A multigrid method for the estimation of geometric anisotropy in environmental data from sensor networks. Computers & Geosciences 37 320–330.
  • Stein, M. L. (1988). Asymptotically efficient prediction of a random field with a misspecified covariance function. Ann. Statist. 16 55–63.
  • Stein, M. L., Chi, Z. and Welty, L. J. (2004). Approximating likelihoods for large spatial data sets. J. R. Stat. Soc. Ser. B. Stat. Methodol. 66 275–296.
  • Thon, K., Geilhufe, M. and Percival, D. B. (2015). A multiscale wavelet-based test for isotropy of random fields on a regular lattice. IEEE Trans. Image Process. 24 694–708.
  • Van Hala, M., Bandyopadhyay, S., Lahiri, S. N. and Nordman, D. J. (2014). A frequency domain empirical likelihood for estimation and testing of spatial covariance structure. Preprint.
  • Vecchia, A. V. (1988). Estimation and model identification for continuous spatial processes. J. R. Stat. Soc. Ser. B. Stat. Methodol. 50 297–312.
  • Watson, G. S. (1964). Smooth regression analysis. Sankhyā Ser. A 26 359–372.
  • Weller, Z. D. (2015a). spTest: Nonparametric hypothesis tests of isotropy and symmetry. R package version 0.2.2.
  • Weller, Z. D. (2015b). SpTest: An R package implementing nonparametric tests of isotropy. J. Stat. Softw. To appear.
  • Zhang, X., Li, B. and Shao, X. (2014). Self-normalization for spatial data. Scand. J. Stat. 41 311–324.
  • Zimmerman, D. L. (1993). Another look at anisotropy in geostatistics. Math. Geol. 25 453–470.