Statistical Science

Close-Kin Mark-Recapture

Mark V. Bravington, Hans J. Skaug, and Eric C. Anderson

Full-text: Open access


Mark-recapture (MR) methods are commonly used to study wildlife populations. Taking advantage of modern genetics one can generalize from “recapture of self” to “recapture of closely-related kin”. Abundance and other demographic parameters of adults can then be estimated using, if necessary, only samples from dead animals (live-release is optional). This greatly widens the scope of MR, e.g. to commercial fisheries where large-scale tagging is impractical, and enhances the power of conventional MR studies where live release and tissue sampling is possible. We give explicit formulae for kinship (i.e., recapture) probabilities in general and specific cases. These yield a pseudo-likelihood based on pairwise comparisons of individuals in the samples. It is shown that the pseudo-likelihood approximates the full likelihood under sparse sampling of large populations. Experimental design is addressed via the principle of maximizing the Fisher information for parameters of interest. Finally, we discuss challenges related to kinship determination from genetic data, focusing on current limitations and future possibilities.

Article information

Statist. Sci. Volume 31, Number 2 (2016), 259-274.

First available in Project Euclid: 24 May 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Demography genetics kinship mark-recapture pseudo-likelihood


Bravington, Mark V.; Skaug, Hans J.; Anderson, Eric C. Close-Kin Mark-Recapture. Statist. Sci. 31 (2016), no. 2, 259--274. doi:10.1214/16-STS552.

Export citation


  • Anderson, E. C. and Garza, J. C. (2006). The power of single nucleotide polymorphisms for large-scale parentage inference. Genetics 172 2567–2582.
  • Barker, R. J., Schofield, M. R., Wright, J. A., Frantz, A. C. and Stevens, C. (2014). Closed-population capture-recapture modeling of samples drawn one at a time. Biometrics 70 775–782.
  • Besag, J. (1975). Statistical analysis of non-lattice data. The Statistician 24 179–195.
  • Blouin, M. S. (2003). DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol. Evol. 18 503–511.
  • Borchers, D. L. and Efford, M. G. (2008). Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 64 377–385, 664.
  • Bravington, M. (2015). Close-kin mark-recapture: Estimating the abundance of bluefin tuna from parent–offspring pairs. Preprint.
  • Bravington, M., Grewe, P. and Davies, C. (2014). Fishery-independent estimate of spawning biomass of Southern Bluefin Tuna through identification of close-kin using genetic markers. FRDC Report 2007/034, CSIRO, Australia.
  • Cole, D. J., Morgan, B. J. T., Catchpole, E. A. and Hubbard, B. A. (2012). Parameter redundancy in mark-recovery models. Biom. J. 54 507–523.
  • Cormack, R. (1964). Estimates of survival from the sighting of marked animals. Biometrika 51 429–438.
  • Cotterman, C. W. (1940). A calculus for statistico-genetics. Ph.D. thesis, Ohio State Univ., Columbus, OH.
  • Crow, J. F. and Kimura, M. (1970). An Introduction to Population Genetics Theory. Harper & Row, London.
  • Davey, J. W., Hohenlohe, P. A., Etter, P. D., Boone, J. Q., Catchen, J. M. and Blaxter, M. L. (2011). Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12 499–510.
  • Griewank, A. and Walther, A. (2008). Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM, Philadelphia, PA.
  • Hillary, R. M., Preece, A. L., Davies, C. R., Kurota, H., Sakai, O., Itoh, T., Parma, A. M., Butterworth, D. S., Ianelli, J. and Branch, T. A. (2015). A scientific alternative to moratoria for rebuilding depleted international tuna stocks. Fish and Fisheries. DOI:10.1111/faf.12121.
  • Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. I: Statistics 221–233. Univ. California Press, Berkeley, CA.
  • Jarman, S. N., Polanowski, A. M., Faux, C. E., Robbins, J., Paoli-Iseppi, D., Bravington, M., Deagle, B. E. et al. (2015). Molecular biomarkers for chronological age in animal ecology. Mol. Ecol. 24 4826–4847.
  • Jolly, G. M. (1965). Explicit estimates from capture–recapture data with both death and immigration-stochastic model. Biometrika 52 225–247.
  • Kanno, Y., Vokoun, J. C. and Letcher, B. H. (2011). Sibship reconstruction for inferring mating systems, dispersal and effective population size in headwater brook trout (Salvelinus fontinalis) populations. Conservation Genetics 12 619–628.
  • Lander, E. S. and Green, P. (1987). Construction of multilocus genetic linkage maps in humans. Proc. Natl. Acad. Sci. USA 84 2363–2367.
  • Lukacs, P. M. and Burnham, K. P. (2005). Review of capture–recapture methods applicable to noninvasive genetic sampling. Mol. Ecol. 14 3909–3919.
  • Marshall, T. C., Slate, J., Kruuk, L. E. B. and Pemberton, J. M. (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7 639–655.
  • Meagher, T. R. and Thompson, E. (1986). The relationship between single parent and parent pair genetic likelihoods in genealogy reconstruction. Theor. Popul. Biol. 29 87–106.
  • Palsbøll, P., Peery, Z. and Berube, M. (2010). Detecting populations in the ‘ambiguous’ zone: Kinship-based estimation of population structure at low genetic divergence. Molecular Ecology Resources 10 797–805.
  • Peel, D., Bravington, M. V., Kelly, N., Wood, S. N. and Knuckey, I. (2013). A model-based approach to designing a fishery-independent survey. J. Agric. Biol. Environ. Stat. 18 1–21.
  • Pledger, S., Pollock, K. H. and Norris, J. L. (2010). Open capture–recapture models with heterogeneity: II. Jolly–Seber model. Biometrics 66 883–890.
  • Polanowski, A. M., Robbins, J., Chandler, D. and Jarman, S. N. (2014). Epigenetic estimation of age in humpback whales. Molecular Ecology Resources. 14 976–987. DOI:10.1111/1755-0998.12247.
  • Pollock, K. H., Nichols, J. D., Brownie, C. and Hines, J. E. (1990). Statistical inference for capture–recapture experiments. Wildlife Monographs 107 3–97.
  • Seber, G. A. F. (1965). A note on the multiple-recapture census. Biometrika 52 249–259.
  • Shendure, J. and Ji, H. (2008). Next-generation DNA sequencing. Nat. Biotechnol. 26 1135–1145.
  • Skare, Ø., Sheehan, N. and Egeland, T. (2009). Identification of distant family relationships. Bioinformatics 25 2376–2382.
  • Skaug, H. J. (2001). Allele-sharing methods for estimation of population size. Biometrics 57 750–756.
  • Skaug, H., Berube, M. and Palsbøll, P. (2010). Detecting dyads of related individuals in large collections of DNA-profiles by controlling the false discovery rate. Molecular Ecology Resources 10 693–700.
  • Sobel, E., Papp, J. C. and Lange, K. (2002). Detection and integration of genotyping errors in statistical genetics. Am. J. Hum. Genet. 70 496–508.
  • Thompson, E. A. (1975). The estimation of pairwise relationships. Ann. Hum. Genet. 39 173–188.
  • Thompson, E. A. (2013). Identity by descent: Variation in meiosis, across genomes, and in populations. Genetics 194 301–326.
  • Wang, J. (2004). Sibship reconstruction from genetic data with typing errors. Genetics 166 1963–1979.
  • Wang, J. (2009). A new method for estimating effective population sizes from a single sample of multilocus genotypes. Mol. Ecol. 18 2148–2164.
  • Wang, J. (2010). Effects of genotyping errors on parentage exclusion analysis. Mol. Ecol. 19 5061–5078.
  • Weir, B. S. (1996). Genetic Data Analysis II. Sinauer Associates, Sunderland, MA.
  • Wright, J. A., Barker, R. J., Schofield, M. R., Frantz, A. C., Byrom, A. E. and Gleeson, D. M. (2009). Incorporating genotype uncertainty into mark-recapture-type models for estimating abundance using DNA samples. Biometrics 65 833–840.