Statistical Science

50-Year-Old Curiosities: Ancillarity and Inference in Capture–Recapture Models

Matthew Schofield and Richard Barker

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We review developments from the late 1950s, starting with the work of John Darroch, that led to the models of Cormack [Biometrika 51 (1964) 429–438], Jolly [Biometrika 52 (1965) 225–247] and Seber [Biometrika 52 (1965) 249–259] that are commemorated in this volume. We emphasize some of the fundamental contributions that were pivotal and often ahead of their time. We look at how these early contributions helped to shape the field and illustrate important concepts in statistics, including sufficiency, ancillarity, partial likelihoods, missing data and model fitting in the presence of latent variables. We also identify two curiosities. The first is the long-held and mistaken belief that the maximum likelihood estimators for various capture–recapture models are in common. Using various notions of ancillarity, we show that the maximum likelihood estimators from partial models (like the Cormack–Jolly–Seber model) will in general differ from full likelihood approaches (such as the Jolly–Seber model). The second is the belief that model specification in terms of latent variables is a relatively recent advance. We highlight how Jolly (1965) used a state-space model to describe the problem, using latent variables to separate the capture and mortality processes. We show how Markov chain Monte Carlo can be used to fit this model and how it relates to other capture–recapture models specified in terms of latent variables.

Article information

Source
Statist. Sci., Volume 31, Number 2 (2016), 161-174.

Dates
First available in Project Euclid: 24 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.ss/1464105035

Digital Object Identifier
doi:10.1214/16-STS550

Mathematical Reviews number (MathSciNet)
MR3506097

Keywords
Ancillarity capture–recapture data augmentation goodness of fit sufficiency

Citation

Schofield, Matthew; Barker, Richard. 50-Year-Old Curiosities: Ancillarity and Inference in Capture–Recapture Models. Statist. Sci. 31 (2016), no. 2, 161--174. doi:10.1214/16-STS550. https://projecteuclid.org/euclid.ss/1464105035


Export citation

References

  • Barker, R. J. (1997). Joint modeling of live-recapture, tag-resight, and tag-recovery data. Biometrics 53 666–677.
  • Barker, R. J. and White, G. C. (2004). Towards the mother-of-all-models: Customised construction of the mark-recapture likelihood function. Animal Biodiversity and Conservation 27 177–185.
  • Barker, R. J., Schofield, M. R., Wright, J. A., Frantz, A. C. and Stevens, C. (2014). Closed-population capture–recapture modeling of samples drawn one at a time. Biometrics 70 775–782.
  • Barndorff-Nielsen, O. (1976). Nonformation. Biometrika 63 567–571.
  • Berger, J. O., Liseo, B. and Wolpert, R. L. (1999). Integrated likelihood methods for eliminating nuisance parameters. Statist. Sci. 14 1–28.
  • Bonner, S. J. and Schwarz, C. J. (2006). An extension of the Cormack–Jolly–Seber model for continuous covariates with application to Microtus pennsylvanicus. Biometrics 62 142–149, 317.
  • Box, J. F. (1978). R. A. Fisher: The Life of a Scientist. Wiley, New York.
  • Brownie, C., Anderson, D. R., Burnham, K. P. and Robson, D. A. (1976). Statistical inference from band recovery data—A handbook. Technical report, U.S. Department of the Interior, Fish and Wildlife Service Resource Publication No. 131, Washington, DC.
  • Brownie, C., Anderson, D. R., Burnham, K. P. and Robson, D. A. (1985). Statistical inference from band recovery data—A handbook. Technical report, U.S. Department of the Interior, Fish and Wildlife Service Resource Publication No. 156, Washington, DC.
  • Brownie, C., Hines, J. E., Nichols, J. D., Pollock, K. H. and Hestbeck, J. B. (1993). Capture–recapture studies for multiple strata including non-Markovian transitions. Biometrics 49 1173–1187.
  • Burnham, K. P. (1991). On a unified theory for release-resampling of animal populations. In Proceedings 1990 Taipei Symposium in Statistics (M. T. Chao and P. E. Cheng, eds.) 11–35. Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.
  • Burnham, K. P. (1993). A Theory for Combined Analysis of Ring Recovery and Recapture Data. Birkhäuser, Basel.
  • Cormack, R. M. (1964). Estimates of survival from the sighting of marked animals. Biometrika 51 429–438.
  • Cormack, R. M. (1989). Log-linear models for capture–recapture. Biometrics 45 395–413.
  • Cormack, R. M. (1992). Interval estimation for mark-recapture studies of closed populations. Biometrics 48 567–576.
  • Cox, D. R. (1975). Partial likelihood. Biometrika 62 269–276.
  • Crosbie, S. F. (1979). The mathematical modelling of capture-mark-recapture experiments on animal populations. Ph.D. thesis, University of Otago, Dunedin, New Zealand.
  • Crosbie, S. F. and Manly, B. F. J. (1985). Parsimonious modelling of capture-mark-recapture studies. Biometrics 41 385–398.
  • Darroch, J. N. (1958). The multiple-recapture census. I. Estimation of a closed population. Biometrika 45 343–359.
  • Darroch, J. N. (1959). The multiple-recapture census. II. Estimation when there is immigration or death. Biometrika 46 336–351.
  • Draper, D. (1995). Inference and hierarchical modeling in the social sciences. J. Educ. Behav. Stat. 20 115–147.
  • Dupuis, J. A. (1995). Bayesian estimation of movement and survival probabilities from capture–recapture data. Biometrika 82 761–772.
  • Dupuis, J. A. and Schwarz, C. J. (2007). A Bayesian approach to the multistate Jolly–Seber capture–recapture model. Biometrics 63 1015–1022, 1309.
  • Fisher, R. A. (1925). Theory of statistical estimation. In Mathematical Proceedings of the Cambridge Philosophical Society 22 700–725. Cambridge Univ Press, Cambridge.
  • Fisher, R. A. (1934). Two new properties of mathematical likelihood. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 144 285–307.
  • Fisher, R. A. and Ford, E. B. (1947). The spread of a gene in natural conditions in a colony of the moth Panaxia dominula L. Heredity 1 143–174.
  • Ghosh, M., Reid, N. and Fraser, D. A. S. (2010). Ancillary statistics: A review. Statist. Sinica 20 1309–1332.
  • Gimenez, O., Rossi, V., Choquet, R., Dehais, C., Doris, B., Varella, H., Vila, J. P. and Pradel, R. (2007). State-space modelling of data on marked individuals. Ecological Modelling 206 431–438.
  • Imai, K. and van Dyk, D. A. (2005). A Bayesian analysis of the multinomial probit model using marginal data augmentation. J. Econometrics 124 311–334.
  • Jackson, C. H. N. (1939). The analysis of an animal population. Journal of Animal Ecology 8 238–246.
  • Jiao, X. and van Dyk, D. A. (2015). A corrected and more efficient suite of MCMC samplers for the multinomal probit model. Preprint. Available at arXiv:1504.07823.
  • Jolly, G. M. (1963). Estimates of population parameters from multiple recapture data with both death and dilution—Deterministic model. Biometrika 50 113–128.
  • Jolly, G. M. (1965). Explicit estimates from capture–recapture data with both death and immigration-stochastic model. Biometrika 52 225–247.
  • Kendall, W. L., Pollock, K. H. and Brownie, C. (1995). A likelihood-based approach to capture–recapture estimations of demographic parameters under the robust design. Biometrics 51 293–308.
  • King, R., Brooks, S. P., Morgan, B. J. T. and Coulson, T. (2006). Factors influencing Soay sheep survival: A Bayesian analysis. Biometrics 62 211–220, 319.
  • Langrock, R. and King, R. (2013). Maximum likelihood estimation of mark-recapture-recovery models in the presence of continuous covariates. Ann. Appl. Stat. 7 1709–1732.
  • Lebreton, J. D., Burnham, K. P., Clobert, J. and Anderson, D. R. (1992). Modelling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecological Monographs 62 67–118.
  • Leslie, P. H., Chitty, D. and Chitty, H. (1953). The estimation of population parameters from data obtained by means of the capture–recapture method: III. An example of the practical applications of the method. Biometrika 40 137–169.
  • Link, W. A. and Barker, R. J. (2005). Modeling association among demographic parameters in analysis of open population capture–recapture data. Biometrics 61 46–54.
  • Link, W. A. and Barker, R. J. (2010). Bayesian Inference with Ecological Applications. Academic Press, London.
  • Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data, 2nd ed. Wiley, Hoboken, NJ.
  • Lunn, D., Spiegelhalter, D., Thomas, A. and Best, N. (2009). The BUGS project: Evolution, critique and future directions. Stat. Med. 28 3049–3067.
  • Nichols, J. D. (2016). And the first one now will later be last: Time-reversal in Cormack–Jolly–Seber models. Statist. Sci. 31 175–190.
  • Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing. Vienna, Austria.
  • Pollock, K. H. (1975). A $K$-sample tag-recapture model allowing for unequal survival and catchability. Biometrika 62 577–583.
  • Pollock, K. H. (1982). A capture–recapture design robust to unequal probability of capture. Journal of Wildlife Management 46 752–757.
  • Pollock, K. H., Hines, J. E. and Nichols, J. D. (1985). Goodness-of-fit tests for open capture–recapture models. Biometrics 41 399–410.
  • Pollock, K. H., Nichols, J. D., Brownie, C. and Hines, J. E. (1990). Statistical inference for capture–recapture experiments. Wildlife Monographs 107.
  • Pradel, R. (1996). Utilization of capture-mark-recapture for the study of recruitment and population growth rate. Biometrics 52 703–709.
  • Royle, J. A. (2008). Modeling individual effects in the Cormack–Jolly–Seber model: A state-space formulation. Biometrics 64 364–370, 664.
  • Rubin, D. B. (1976). Inference and missing data. Biometrika 63 581–592.
  • Sanathanan, L. (1972). Estimating the size of a multinomial population. Ann. Math. Stat. 43 142–152.
  • Sandland, R. L. and Cormack, R. M. (1984). Statistical inference for Poisson and multinomial models for capture–recapture experiments. Biometrika 71 27–33.
  • Schofield, M. R. and Barker, R. J. (2008). A unified capture–recapture framework. J. Agric. Biol. Environ. Stat. 13 458–477.
  • Schofield, M. R. and Barker, R. J. (2009). A further step toward the mother-of-all-models: Flexibility and functionality in the modeling of capture–recapture data. In Modeling Demographic Processes in Marked Populations (D. L. Thomson, E. G. Cooch and M. J. Conroy, eds.). Environmental and Ecological Statistics 3 677–689. Springer, New York.
  • Schofield, M. R. and Barker, R. J. (2016). Supplement to “50-Year-Old Curiosities: Ancillarity and Inference in Capture–Recapture Models.” DOI:10.1214/16-STS550SUPP.
  • Schofield, M. R., Barker, R. J. and MacKenzie, D. I. (2009). Flexible hierarchical mark-recapture modeling for open populations using WinBUGS. Environ. Ecol. Stat. 16 369–387.
  • Schwarz, C. J. and Arnason, A. N. (1996). A general methodology for the analysis of capture–recapture experiments in open populations. Biometrics 52 860–873.
  • Schwarz, C. J., Schweigert, J. F. and Arnason, A. N. (1993). Estimating migration rates using tag-recovery data. Biometrics 49 177–193.
  • Schwarz, C. J. and Seber, G. A. F. (1999). A review of estimating animal abundance III. Statist. Sci. 14 427–456.
  • Seber, G. A. F. (1962). The multi-sample single recapture census. Biometrika 49 339–350.
  • Seber, G. A. F. (1965). A note on the multiple-recapture census. Biometrika 52 249–259.
  • Seber, G. A. F. (1970). Estimating time-specific survival and reporting rates for adult birds from band returns. Biometrika 57 313–318.
  • Seber, G. A. F. (1982). The Estimation of Animal Abundance and Related Parameters, 2nd ed. Charles Griffin and Company, High Wycombe, England.
  • Seber, G. A. F. (1986). A review of estimating animal abundance. Biometrics 42 267–292.
  • Seber, G. A. F. (1992). A review of estimating animal abundance II. Int. Stat. Rev. 60 129–166.
  • Severini, T. A. (1995). Information and conditional inference. J. Amer. Statist. Assoc. 90 1341–1346.
  • Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. J. Amer. Statist. Assoc. 82 528–550.
  • White, G. C. and Burnham, K. P. (1999). Program MARK: Survival estimation from populations of marked animals. Bird Study 46 S120–S139.
  • Williams, B. K., Nichols, J. D. and Conroy, M. J. (2002). Analysis and Management of Animal Populations. Academic Press, San Diego, CA.

Supplemental materials

  • Supplementary materials for 50-year-old curiosities: ancillarity and inference in capture-recapture models. We provide additional details about: • The parameterization of the CMSA model that is used to determine the ancillarity results in Section 3.3.3. • The numerical methods to confirm the theoretical results given in Section 3.3. • A JAGS specification of the latent variable state-space model Jolly outlined in his 1965 paper.