Statistical Science

Rejoinder: The Ubiquitous Ewens Sampling Formula

Harry Crane

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Article information

Source
Statist. Sci., Volume 31, Number 1 (2016), 37-39.

Dates
First available in Project Euclid: 10 February 2016

Permanent link to this document
https://projecteuclid.org/euclid.ss/1455115912

Digital Object Identifier
doi:10.1214/15-STS544

Mathematical Reviews number (MathSciNet)
MR3458591

Citation

Crane, Harry. Rejoinder: The Ubiquitous Ewens Sampling Formula. Statist. Sci. 31 (2016), no. 1, 37--39. doi:10.1214/15-STS544. https://projecteuclid.org/euclid.ss/1455115912


Export citation

References

  • [1] Aldous, D. (1996). Probability distributions on cladograms. In Random Discrete Structures (Minneapolis, MN, 1993). IMA Vol. Math. Appl. 76 1–18. Springer, New York.
  • [2] Arratia, R. and Tavaré, S. (1994). Independent process approximations for random combinatorial structures. Adv. Math. 104 90–154.
  • [3] Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286 509–512.
  • [4] Crane, H. and Dempsey, W. (2015). Atypical scaling behavior persists in real world interaction networks. Available at arXiv:1509.08184.
  • [5] Crane, H. and Dempsey, W. (2015). Edge exchangeable network models and the power law. Unpublished manuscript.
  • [6] Dempsey, W. and McCullagh, P. (2015). The pilgrim process. Available at arXiv:1412.1490.
  • [7] Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theoret. Population Biology 3 87–112.
  • [8] Favaro, S., Lijoi, A. and Prünster, I. (2013). Conditional formulae for Gibbs-type exchangeable random partitions. Ann. Appl. Probab. 23 1721–1754.
  • [9] Ghosal, S. (2010). The Dirichlet process, related priors and posterior asymptotics. In Bayesian Nonparametrics (N. L. Hjort, C. Holmes, P. Müller and S. G. Walker, eds.) 35–79. Cambridge Univ. Press, Cambridge.
  • [10] Ishwaran, H. and James, L. F. (2003). Generalized weighted Chinese restaurant processes for species sampling mixture models. Statist. Sinica 13 1211–1235.
  • [11] Kingman, J. F. C. (1982). The coalescent. Stochastic Process. Appl. 13 235–248.
  • [12] Ruggiero, M. and Walker, S. G. (2009). Bayesian nonparametric construction of the Fleming–Viot process with fertility selection. Statist. Sinica 19 707–720.
  • [13] Wright, S. (1978). Evolution and the Genetics of Populations 4. Univ. Chicago Press, Chicago, IL.

See also