Statistical Science

Functional Data Analysis of Amplitude and Phase Variation

J. S. Marron, James O. Ramsay, Laura M. Sangalli, and Anuj Srivastava

Full-text: Open access

Abstract

The abundance of functional observations in scientific endeavors has led to a significant development in tools for functional data analysis (FDA). This kind of data comes with several challenges: infinite-dimensionality of function spaces, observation noise, and so on. However, there is another interesting phenomena that creates problems in FDA. The functional data often comes with lateral displacements/deformations in curves, a phenomenon which is different from the height or amplitude variability and is termed phase variation. The presence of phase variability artificially often inflates data variance, blurs underlying data structures, and distorts principal components. While the separation and/or removal of phase from amplitude data is desirable, this is a difficult problem. In particular, a commonly used alignment procedure, based on minimizing the $\mathbb{L}^{2}$ norm between functions, does not provide satisfactory results. In this paper we motivate the importance of dealing with the phase variability and summarize several current ideas for separating phase and amplitude components. These approaches differ in the following: (1) the definition and mathematical representation of phase variability, (2) the objective functions that are used in functional data alignment, and (3) the algorithmic tools for solving estimation/optimization problems. We use simple examples to illustrate various approaches and to provide useful contrast between them.

Article information

Source
Statist. Sci., Volume 30, Number 4 (2015), 468-484.

Dates
First available in Project Euclid: 9 December 2015

Permanent link to this document
https://projecteuclid.org/euclid.ss/1449670854

Digital Object Identifier
doi:10.1214/15-STS524

Mathematical Reviews number (MathSciNet)
MR3432837

Zentralblatt MATH identifier
06946198

Keywords
Functional data analysis registration warping alignment elastic metric dynamic time warping Fisher–Rao metric

Citation

Marron, J. S.; Ramsay, James O.; Sangalli, Laura M.; Srivastava, Anuj. Functional Data Analysis of Amplitude and Phase Variation. Statist. Sci. 30 (2015), no. 4, 468--484. doi:10.1214/15-STS524. https://projecteuclid.org/euclid.ss/1449670854


Export citation

References

  • Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical Inference Under Order Restrictions. The Theory and Application of Isotonic Regression. Wiley, New York.
  • Boudaoud, S., Rix, H. and Meste, O. (2010). Core shape modelling of a set of curves. Comput. Statist. Data Anal. 54 308–325.
  • Dryden, I. L. and Mardia, K. V. (1998). Statistical Shape Analysis. Wiley, Chichester.
  • Gervini, D. and Gasser, T. (2004). Self-modelling warping functions. J. R. Stat. Soc. Ser. B. Stat. Methodol. 66 959–971.
  • Grenander, U. (1993). General Pattern Theory. Oxford Univ. Press, New York.
  • Grenander, U. and Miller, M. I. (1998). Computational anatomy: An emerging discipline. Quart. Appl. Math. 56 617–694.
  • Hadjipantelis, P. Z., Aston, J. A. D., Müller, H. G. and Evans, J. P. (2015). Unifying amplitude and phase analysis: A compositional data approach to functional multivariate mixed-effects modeling of Mandarin Chinese. J. Amer. Statist. Assoc. 110 545–559.
  • Hadjipantelis, P. Z., Aston, J. A. D., Müller, H.-G. and Moriarty, J. (2014). Analysis of spike train data: A multivariate mixed effects model for phase and amplitude. Electron. J. Stat. 8 1797–1807.
  • Jung, S., Dryden, I. L. and Marron, J. S. (2012). Analysis of principal nested spheres. Biometrika 99 551–568.
  • Kneip, A. and Ramsay, J. O. (2008). Combining registration and fitting for functional models. J. Amer. Statist. Assoc. 103 1155–1165.
  • Lavine, B. K. and Workman, J. J. (2013). Chemometrics. Anal. Chem. 85 705–714.
  • Liu, X. and Müller, H.-G. (2004). Functional convex averaging and synchronization for time-warped random curves. J. Amer. Statist. Assoc. 99 687–699.
  • Liu, X. and Yang, M. C. K. (2009). Simultaneous curve registration and clustering for functional data. Comput. Statist. Data Anal. 53 1361–1376.
  • Lu, X. and Marron, J. S. (2013). Principal nested spheres for time warped functional data analysis. Preprint. Available at arXiv:1304.6789.
  • Marron, J. S. and Alonso, A. M. (2014). Overview of object oriented data analysis. Biom. J. 56 732–753.
  • Marron, J. S., Ramsay, J. O., Sangalli, L. M. and Srivastava, A. (2014). Statistics of time warpings and phase variations. Electron. J. Stat. 8 1697–1702.
  • Parodi, A., Patriarca, M., Sangalli, L., Secchi, P., Vantini, S. and Vitelli, V. (2014). fdakma: Functional data analysis: K-mean alignment. R package version 1.1.1.
  • Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis, 2nd ed. Springer, New York.
  • Sakoe, H. and Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26 43–49.
  • Sangalli, L. M., Secchi, P. and Vantini, S. (2014). Analysis of AneuRisk65 data: $k$-mean alignment. Electron. J. Stat. 8 1891–1904.
  • Sangalli, L. M., Secchi, P., Vantini, S. and Veneziani, A. (2009). A case study in exploratory functional data analysis: Geometrical features of the internal carotid artery. J. Amer. Statist. Assoc. 104 37–48.
  • Sangalli, L. M., Secchi, P., Vantini, S. and Vitelli, V. (2010). $k$-mean alignment for curve clustering. Comput. Statist. Data Anal. 54 1219–1233.
  • Sotiras, A., Davatzikos, C. and Paragios, N. (2013). Deformable medical image registration: A survey. IEEE Trans. Med. Imag. 32 1153–1190.
  • Srivastava, A., Jermyn, I. and Joshi, S. H. (2007). Riemannian analysis of probability density functions with applications in vision. In IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR ’07 1–8. Minneapolis, MN, USA.
  • Srivastava, A., Wu, W., Kurtek, S., Klassen, E. and Marron, J. S. (2011a). Registration of functional data using Fisher–Rao metric. Preprint. Available at arXiv:1103.3817v2.
  • Srivastava, A., Klassen, E., Joshi, S. H. and Jermyn, I. H. (2011b). Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33 1415–1428.
  • Tang, R. and Müller, H.-G. (2008). Pairwise curve synchronization for functional data. Biometrika 95 875–889.
  • Tang, R. and Müller, H.-G. (2009). Time-synchronized clustering of gene expression trajectories. Biostatistics 10 32–45.
  • Tucker, J. D., Wu, W. and Srivastava, A. (2013). Generative models for functional data using phase and amplitude separation. Comput. Statist. Data Anal. 61 50–66.
  • Tuddenham, R. D. and Snyder, M. M. (1954). Physical growth of California boys and girls from birth to eighteen years. University of California Publication in Child Development 1 183–364.
  • Vantini, S. (2012). On the definition of phase and amplitude variability in functional data analysis. TEST 21 676–696.
  • Veeraraghavan, A., Srivastava, A., Roy-Chowdhury, A. K. and Chellappa, R. (2009). Rate-invariant recognition of humans and their activities. IEEE Trans. Image Process. 18 1326–1339.
  • Wang, H. and Marron, J. S. (2007). Object oriented data analysis: Sets of trees. Ann. Statist. 35 1849–1873.
  • Younes, L., Michor, P. W., Shah, J. and Mumford, D. (2008). A metric on shape space with explicit geodesics. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 19 25–57.