Statistical Science

Think Globally, Act Globally: An Epidemiologist’s Perspective on Instrumental Variable Estimation

Sonja A. Swanson and Miguel A. Hernán

Full-text: Open access

Article information

Source
Statist. Sci., Volume 29, Number 3 (2014), 371-374.

Dates
First available in Project Euclid: 23 September 2014

Permanent link to this document
https://projecteuclid.org/euclid.ss/1411437517

Digital Object Identifier
doi:10.1214/14-STS491

Mathematical Reviews number (MathSciNet)
MR3264549

Zentralblatt MATH identifier
1331.62487

Citation

Swanson, Sonja A.; Hernán, Miguel A. Think Globally, Act Globally: An Epidemiologist’s Perspective on Instrumental Variable Estimation. Statist. Sci. 29 (2014), no. 3, 371--374. doi:10.1214/14-STS491. https://projecteuclid.org/euclid.ss/1411437517


Export citation

References

  • Angrist, J. D., Imbens, G. W. and Rubin, D. B. (1996). Identification of causal effects using instrumental variables. J. Amer. Statist. Assoc. 91 444–455.
  • Balke, A. and Pearl, J. (1997). Bounds on treatment effects from studies with imperfect compliance. J. Amer. Statist. Assoc. 92 1171–1176.
  • Brookhart, M. A. and Schneeweiss, S. (2007). Preference-based instrumental variable methods for the estimation of treatment effects: Assessing validity and interpreting results. Int. J. Biostat. 3 Article 14.
  • Deaton, A. (2010). Instruments, randomization, and learning about development. Journal of Economic Literature 48 424–455.
  • Hernán, M. A. and Robins, J. M. (2006). Instruments for causal inference: An epidemiologist’s dream? Epidemiology 17 360–372 [Errata in Epidemiology 15 (2014) 164].
  • Imbens, G. W. (2010). Better LATE than nothing: Some comments on Deaton (2009) and Heckman and Urzua (2009). Journal of Economic Literature 48 399–423.
  • McDonald, C. J., Hui, S. L. and Tierney, W. M. (1992). Effects of computer reminders for influenza vaccination on morbidity during influenza epidemics. MD Comput. 9 304–312.
  • Pearl, J. (2011). Principal stratificationa goal or a tool? Int. J. Biostat. 7 Article 20.
  • Richardson, T. S. and Robins, J. M. (2010). Analysis of the binary instrumental variable model. In Heuristics, Probability and Causality: A Tribute to Judea Pearl (R. Dechter, H. Geffner and J. Y. Halpern, eds.) 415–444. College Publications, London.
  • Robins, J. M. (1989). The analysis of randomized and non-randomized AIDS treatment trials using a new approach to causal inference in longitudinal studies. In Health Service Research Methodology: A Focus on AIDS (L. Sechrest, H. Freeman and A. Mulley, eds.) 113–159. National Center for Health Services Research, U.S. Public Health Service, Washington, DC.
  • Robins, J. M. (1994). Correcting for non-compliance in randomized trials using structural nested mean models. Comm. Statist. Theory Methods 23 2379–2412.
  • Robins, J. M. and Greenland, S. (1996). Identification of causal effects using instrumental variables: Comment. J. Amer. Statist. Assoc. 91 456–458.
  • Robins, J. M. and Hernán, M. A. (2009). Estimation of the causal effects of time-varying exposures. In Longitudinal Data Analysis (G. Fitzmaurice, M. Davidian, G. Verbeke and G. Molenberghs, eds.) 553–599. CRC Press, Boca Raton, FL.
  • Swanson, S. A. and Hernán, M. A. (2013). Commentary: How to report instrumental variable analyses (suggestions welcome). Epidemiology 24 370–374.
  • Swanson, S. A., Miller, M., Robins, J. M. and Hernán, M. A. (2014a). Monotonicity violations for ill-defined preference-based instruments: Everybody is a defier (maybe) [abstract]. International Journal of Epidemiology Supplement.
  • Swanson, S. A., Robins, J. M., Miller, M. and Hernán, M. A. (2014b). Partial identification of the average treatment effect using instrumental variable type assumptions: Review [abstract]. International Journal of Epidemiology Supplement.

See also

  • Main article: Instrumental Variables: An Econometrician's Perspective.