Statistical Science

Causal Graphs: Addressing the Confounding Problem Without Instruments or Ignorability

Ilya Shpitser

Full-text: Open access

Article information

Source
Statist. Sci., Volume 29, Number 3 (2014), 367-370.

Dates
First available in Project Euclid: 23 September 2014

Permanent link to this document
https://projecteuclid.org/euclid.ss/1411437516

Digital Object Identifier
doi:10.1214/14-STS488

Mathematical Reviews number (MathSciNet)
MR3264548

Zentralblatt MATH identifier
1331.62483

Citation

Shpitser, Ilya. Causal Graphs: Addressing the Confounding Problem Without Instruments or Ignorability. Statist. Sci. 29 (2014), no. 3, 367--370. doi:10.1214/14-STS488. https://projecteuclid.org/euclid.ss/1411437516


Export citation

References

  • Horvitz, D. G. and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. J. Amer. Statist. Assoc. 47 663–685.
  • Huang, Y. and Valtorta, M. (2006). Pearl’s calculus of interventions is complete. In Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence 217–224. AUAI Press, Arlington, VA.
  • Imai, K., Keele, L. and Yamamoto, T. (2010). Identification, inference and sensitivity analysis for causal mediation effects. Statist. Sci. 25 51–71.
  • Neyman, J. (1923). Sur les applications de la thar des probabilities aux experiences Agaricales: Essay des principle. Excerpts reprinted in English: Statist. Sci. 5 (1990) 463–472.
  • Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge Univ. Press, Cambridge.
  • Richardson, T. S. and Robins, J. M. (2013). Single World Intervention Graphs (SWIGs): A unification of the counterfactual and graphical approaches to causality. Preprint, available at http://www.csss.washington.edu/Papers/wp128.pdf.
  • Robins, J. (1986). A new approach to causal inference in mortality studies with a sustained exposure period—Application to control of the healthy worker survivor effect. Math. Modelling 7 1393–1512.
  • Robins, J. M. (1987). A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods. Journal of Chronic Diseases 40 139–161.
  • Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed. J. Amer. Statist. Assoc. 89 846–866.
  • Robins, J. M. and Wasserman, L. (1997). Estimation of effects of sequential treatments by reparameterizing directed acyclic graphs. In Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence 409–420. Morgan Kaufmann, San Francisco, CA.
  • Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70 41–55.
  • Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and non-randomized studies. Journal of Educational Psychology 66 688–701.
  • Shpitser, I. and Pearl, J. (2006a). Identification of conditional interventional distributions. In Proceedings of the 22nd Conference on Uncertainty in Artificial Intelligence 437–444. AUAI Press, Arlington, VA.
  • Shpitser, I. and Pearl, J. (2006b). Identification of joint interventional distributions in recursive semi-Markovian causal models. In Proceedings of the Twenty-First AAAI Conference on Artificial Intelligence 1219–1226. AAAI Press, Menlo Park, CA.
  • Shpitser, I. and Pearl, J. (2008). Complete identification methods for the causal hierarchy. J. Mach. Learn. Res. 9 1941–1979.
  • Spirtes, P., Glymour, C. and Scheines, R. (1993). Causation, Prediction, and Search. Lecture Notes in Statistics 81. Springer, New York.
  • Tian, J. and Pearl, J. (2002). On the testable implications of causal models with hidden variables. In Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence 519–527. Morgan Kaufmann, San Francisco, CA.
  • VanderWeele, T. J. and Shpitser, I. (2013). On the definition of a confounder. Ann. Statist. 41 196–220.
  • Wright, S. (1921). Correlation and causation. Journal of Agricultural Research 20 557–585.

See also

  • Main article: Instrumental Variables: An Econometrician's Perspective.