Statistical Science

ACE Bounds; SEMs with Equilibrium Conditions

Thomas S. Richardson and James M. Robins

Full-text: Open access

Article information

Source
Statist. Sci., Volume 29, Number 3 (2014), 363-366.

Dates
First available in Project Euclid: 23 September 2014

Permanent link to this document
https://projecteuclid.org/euclid.ss/1411437515

Digital Object Identifier
doi:10.1214/14-STS485

Mathematical Reviews number (MathSciNet)
MR3264547

Zentralblatt MATH identifier
1331.62481

Citation

Richardson, Thomas S.; Robins, James M. ACE Bounds; SEMs with Equilibrium Conditions. Statist. Sci. 29 (2014), no. 3, 363--366. doi:10.1214/14-STS485. https://projecteuclid.org/euclid.ss/1411437515


Export citation

References

  • Balke, A. and Pearl, J. (1997). Bounds on treatment effects from studies with imperfect compliance. J. Amer. Statist. Assoc. 92 1171–1176.
  • Basmann, R. L. (1963). The causal interpretation of non-triangular systems of economic relations (with discussion). Econometrica 31 439–453.
  • Bentzel, R. and Hansen, B. (1954). On recursiveness and interdependency in economic models. Rev. Econom. Stud. 22 153–168.
  • Bentzel, R. and Wold, H. (1946). On statistical demand analysis from the viewpoint of simultaneous equations. Skand. Aktuarietidskr. 29 95–114.
  • Cheng, J. and Small, D. S. (2006). Bounds on causal effects in three-arm trials with non-compliance. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 815–836.
  • Dash, D. and Druzdzel, M. J. (2001). Caveats for causal reasoning with equilibrium models. In Proceedings of the Sixth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU), Toulouse, France (S. Benferhat and P. Besnard, eds.). Lecture Notes in Artificial Intelligence 2143 192–203. Springer, Berlin.
  • Dawid, A. P. (2003). Causal inference using influence diagrams: The problem of partial compliance. In Highly Structured Stochastic Systems (P. J. Green, N. L. Hjort and S. Richardson, eds.). Oxford Statist. Sci. Ser. 27 45–81. Oxford Univ. Press, Oxford.
  • Epstein, R. J. (1987). A History of Econometrics. Contributions to Economic Analysis 165. North-Holland, Amsterdam.
  • Fisher, F. M. (1970). A correspondence principle for simultaneous equation models. Econometrica 38 73–92.
  • Greene, W. H. (2003). Econometric Analysis, 5th ed. Prentice Hall, Upper Saddle River, NJ.
  • Haavelmo, T. (1943). The statistical implications of a system of simultaneous equations. Econometrica 11 1–12.
  • Haavelmo, T. (1958). Hva kan statiske likevektsmodeller fortelle oss? Nationaløkonomisk Tidsskrift 96 (Suppl.) 138–145 (in Norwegian). English translation published as: What can static equilibrium models tell us? Economic Inquiry 12 (1974) 27–34.
  • Hillier, G. H. (1990). On the normalization of structural equations: Properties of direction estimators. Econometrica 58 1181–1194.
  • Iwasaki, Y. and Simon, H. A. (1994). Causality and model abstraction. Artificial Intelligence 67 143–194.
  • Lauritzen, S. L. (2001). Causal inference from graphical models. In Complex Stochastic Systems (Eindhoven, 1999). Monogr. Statist. Appl. Probab. 87 63–107. Chapman & Hall/CRC, Boca Raton, FL.
  • Lauritzen, S. L. and Richardson, T. S. (2002). Chain graph models and their causal interpretations. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 321–361.
  • LeRoy, S. F. (2006). Causality in economics. Technical report, Univ. California, Santa Barbara.
  • Manski, C. F. (1990). Non-parametric bounds on treatment effects. American Economic Review 80 351–374.
  • Morgan, M. S. (1991). The stamping out of process analysis in econometrics. In Appraising Economic Theories (N. de Marchi and M. Blaug, eds.) 237–272. Edward Elgar, Cheltenham.
  • Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge Univ. Press, Cambridge.
  • Richardson, T. S. (1996). Models of feedback: Interpretation and discovery. Ph.D. thesis, Carnegie-Mellon Univ.
  • Richardson, T. S. and Robins, J. M. (2013). Single World Intervention Graphs (SWIGs): A unification of the counterfactual and graphical approaches to causality. Technical Report 128, Center for Statistics and the Social Sciences, Univ. Washington, Seattle, WA.
  • Richardson, T. S. and Robins, J. M. (2014). Assumptions and bounds in the instrumental variable model. Preprint.
  • Robins, J. M. (1989). The analysis of randomized and non-randomized AIDS treatment trials using a new approach to causal inference in longitudinal studies. In Health Service Research Methodology: A Focus on AIDS (L. Sechrest, H. Freeman and A. Mulley, eds.). U.S. Public Health Service, Washington, DC.
  • Robins, J. M. and Greenland, S. (1996). Identification of causal effects using instrumental variables: Comment. J. Amer. Statist. Assoc. 91 456–458.
  • Strotz, R. H. and Wold, H. O. A. (1960). Recursive vs. nonrecursive systems: An attempt at synthesis. Econometrica 28 417–427.
  • Wold, H. O. A. (1959). Ends and means in econometric model building. In Probability and Statistics: The Harald Cramér Volume (U. Grenander, ed.) 355–434. Almqvist & Wiksell, Stockholm.
  • Wold, H. O. A. and Juréen, L. (1953). Demand Analysis. Wiley, New York.

See also

  • Main article: Instrumental Variables: An Econometrician's Perspective.