Statistical Science

Instrumental Variables Before and LATEr

Toru Kitagawa

Full-text: Open access

Abstract

The modern formulation of the instrumental variable methods initiated the valuable interactions between economics and statistics literatures of causal inference and fueled new innovations of the idea. It helped resolving the long-standing confusion that the statisticians used to have on the method, and encouraged the economists to rethink how to make use of instrumental variables in policy analysis.

Article information

Source
Statist. Sci., Volume 29, Number 3 (2014), 359-362.

Dates
First available in Project Euclid: 23 September 2014

Permanent link to this document
https://projecteuclid.org/euclid.ss/1411437514

Digital Object Identifier
doi:10.1214/14-STS494

Mathematical Reviews number (MathSciNet)
MR3264546

Zentralblatt MATH identifier
1331.62475

Keywords
Instrumental variables treatment effect treatment choice

Citation

Kitagawa, Toru. Instrumental Variables Before and LATEr. Statist. Sci. 29 (2014), no. 3, 359--362. doi:10.1214/14-STS494. https://projecteuclid.org/euclid.ss/1411437514


Export citation

References

  • Angrist, J., Imbens, G. and Rubin, D. (1996). Identification of causal effects using instrumental variables. J. Amer. Statist. Assoc. 91 444–455.
  • Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis, 2nd ed. Springer, New York.
  • Chamberlain, G. (2011). Bayesian aspects of treatment choice. In The Oxford Handbook of Bayesian Econometrics (J. Geweke, G. Koop and H. van Dijk, eds.). Oxford Univ. Press, Oxford.
  • Chickering, D. and Pearl, J. (1997). A clinician’s tool for analyzing non-compliance. Computing Science and Statistics 29 424–431.
  • Imbens, G. and Angrist, J. (1994). Identification and estimation of local average treatment effects. Econometrica 62 467–475.
  • Imbens, G. W. and Rubin, D. B. (1997). Bayesian inference for causal effects in randomized experiments with noncompliance. Ann. Statist. 25 305–327.
  • Manski, C. (2000). Identification problems and decisions under ambiguity: Empirical analysis of treatment response and normative analysis of treatment choice. J. Econometrics 95 415–442.
  • Manski, C. F. (2005). Social Choice with Partial Knowledge of Treatment Response. Princeton Univ. Press, Princeton, NJ.
  • Marschak, J. and Andrews, W. H. Jr. (1944). Random simultaneous equations and the theory of production. Econometrica 12 143–205.

See also

  • Main article: Instrumental Variables: An Econometrician's Perspective.