Statistical Science

Instrumental Variables: An Econometrician’s Perspective

Guido W. Imbens

Full-text: Open access


I review recent work in the statistics literature on instrumental variables methods from an econometrics perspective. I discuss some of the older, economic, applications including supply and demand models and relate them to the recent applications in settings of randomized experiments with noncompliance. I discuss the assumptions underlying instrumental variables methods and in what settings these may be plausible. By providing context to the current applications, a better understanding of the applicability of these methods may arise.

Article information

Statist. Sci., Volume 29, Number 3 (2014), 323-358.

First available in Project Euclid: 23 September 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Simultaneous equations models randomized experiments potential outcomes noncompliance selection models


Imbens, Guido W. Instrumental Variables: An Econometrician’s Perspective. Statist. Sci. 29 (2014), no. 3, 323--358. doi:10.1214/14-STS480.

Export citation


  • Abadie, A. (2002). Bootstrap tests for distributional treatment effects in instrumental variable models. J. Amer. Statist. Assoc. 97 284–292.
  • Abadie, A. (2003). Semiparametric instrumental variable estimation of treatment response models. J. Econometrics 113 231–263.
  • Aizer, A. and Doyle, J. (2013). Juvenile incarceration, human capital, and future crime: Evidence from randomly assigned judges. Unpublished working paper, Dept. Economics, Brown Univ., Providence, RI.
  • Altonji, J. G. and Matzkin, R. L. (2005). Cross section and panel data estimators for nonseparable models with endogenous regressors. Econometrica 73 1053–1102.
  • Anderson, T. W. and Rubin, H. (1949). Estimation of the parameters of a single equation in a complete system of stochastic equations. Ann. Math. Statistics 20 46–63.
  • Andrews, D. W. K., Moreira, M. J. and Stock, J. H. (2006). Optimal two-sided invariant similar tests for instrumental variables regression. Econometrica 74 715–752.
  • Andrews, D. and Stock, J. (2007). Inference with weak instruments. In Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress, Vol. III (R. Blundell, W. Newey and T. Persson, eds.) 122–173. Cambridge Univ. Press, Cambridge.
  • Angrist, J. (1990). Lifetime earnings and the Vietnam era draft lottery: Evidence from social security administrative records. American Economic Review 80 313–335.
  • Angrist, J., Graddy, K. and Imbens, G. (2000). The interpretation of instrumental variables estimators in simultaneous equations models with an application to the demand for fish. Rev. Econom. Stud. 67 499–527.
  • Angrist, J. D. and Imbens, G. W. (1995). Two-stage least squares estimation of average causal effects in models with variable treatment intensity. J. Amer. Statist. Assoc. 90 431–442.
  • Angrist, J., Imbens, G. and Rubin, D. (1996). Identification of causal effects using instrumental variables (with discussion). J. Amer. Statist. Assoc. 91 444–472.
  • Angrist, J. and Krueger, A. (1991). Does compulsory school attendance affect schooling and earnings. Quarterly Journal of Economics 106 979–1014.
  • Angrist, J. and Pischke, S. (2009). Mostly Harmless Econometrics. Princeton Univ. Press, Princeton, NJ.
  • Arellano, M. (2002). Sargan’s instrumental variables estimation and the generalized method of moments. J. Bus. Econom. Statist. 20 450–459.
  • Athey, S. and Stern, S. (1998). An empirical framework for testing theories about complementarity in organizational design. Working Paper 6600, NBER.
  • Baiocchi, M., Small, D. S., Lorch, S. and Rosenbaum, P. R. (2010). Building a stronger instrument in an observational study of perinatal care for premature infants. J. Amer. Statist. Assoc. 105 1285–1296.
  • Balke, A. and Pearl, J. (1995). Counterfactuals and policy analysis in structural models. In Uncertainty in Artificial Intelligence 11 (P. Besnard and S. Hanks, eds.) 11–18. Morgan Kaufmann, San Francisco, CA.
  • Balke, A. and Pearl, J. (1997). Bounds on treatment effects from studies with imperfect compliance. J. Amer. Statist. Assoc. 92 1171–1176.
  • Barnow, B. S., Cain, G. G. and Goldberger, A. S. (1980). Issues in the analysis of selectivity bias. In Evaluation Studies, Vol. 5 (E. Stromsdorfer and G. Farkas, eds.). Sage, San Francisco, CA.
  • Basmann, R. (1963a). The causal interpretation of non-triangular systems of economic relations. Econometrica 31 439–448.
  • Basmann, R. (1963b). On the causal interpretation of non-triangular systems of economic relations: A rejoinder. Econometrica 31 451–453.
  • Basmann, R. (1965). Causal systems and stability: Reply to R. W. Clower. Econometrica 33 242–243.
  • Bekker, P. A. (1994). Alternative approximations to the distributions of instrumental variable estimators. Econometrica 62 657–681.
  • Bekker, P. A. and van der Ploeg, J. (2005). Instrumental variable estimation based on grouped data. Statist. Neerlandica 59 239–267.
  • Benkard, L. and Berry, S. (2006). On the nonparametric identification of nonlinear simultaneous equations models: Comment on Brown (1983) and Roehrig (1988). Econometrica 74 1429–1440.
  • Bound, J., Jaeger, D. and Baker, R. (1995). Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak. J. Amer. Statist. Assoc. 90 443–450.
  • Bowden, R. J. and Turkington, D. A. (1984). Instrumental Variables. Econometric Society Monographs in Quantitative Economics 8. Cambridge Univ. Press, Cambridge.
  • Brookhart, M., Wang, P., Solomon, D. and Schneeweiss, S. (2006). Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable. Epidemiology 17 268–275.
  • Brown, B. W. (1983). The identification problem in systems nonlinear in the variables. Econometrica 51 175–196.
  • Card, D. (1995). Using geographic variation in college proximity to estimate the return to schooling. In Aspects of Labor Market Behaviour: Essays in Honour of John Vanderkamp (L. N. Christofides, E. K. Grant and R. Swidinsky, eds.). Univ. Toronto Press, Toronto.
  • Card, D. (2001). Estimating the return to schooling: Progress on some persistent econometric problems. Econometrica 69 1127–1160.
  • Chalak, K. (2011). Identification of local treatment effects using a proxy for an instrument. Unpublished Manuscript, Dept. Economics, Boston College, Boston, MA.
  • Chamberlain, G. and Imbens, G. (2004). Random effects estimators with many instrumental variables. Econometrica 72 295–306.
  • Chao, J. C. and Swanson, N. R. (2005). Consistent estimation with a large number of weak instruments. Econometrica 73 1673–1692.
  • Chernozhukov, V., Hong, H. and Tamer, E. (2007). Estimation and confidence regions for parameter sets in econometric models. Econometrica 75 1243–1284.
  • Chesher, A. (2003). Identification in nonseparable models. Econometrica 71 1405–1441.
  • Chesher, A. (2010). Instrumental variable models for discrete outcomes. Econometrica 78 575–601.
  • Christ, C. (1994). The Cowles Commission’s contributions to econometrics at Chicago, 1939–1955. Journal of Economic Literature 32 30–59.
  • Cochran, W. G. (1968). The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics 24 295–313.
  • Cochran, W. and Rubin, D. (1973). Controlling bias in observational studies: A review. Sankhyā 35 417–446.
  • Cook, T. D. (2008). “Waiting for life to arrive”: A history of the regression-discontinuity design in psychology, statistics and economics. J. Econometrics 142 636–654.
  • Cox, D. R. (1992). Causality: Some statistical aspects. J. Roy. Statist. Soc. Ser. A 155 291–301.
  • Crépon, B., Duflo, E., Gurgand, M., Rathelot, M. and Zamoray, P. (2012). Do labor market policies have displacement effects? Evidence from a clustered randomized experiment. Unpublished manuscript.
  • Dawid, P. (1984). Causal inference from messy data. Comment on ‘On the nature and discovery of structure’. J. Amer. Statist. Assoc. 79 22–24.
  • Deaton, A. (2010). Instruments, randomization, and learning about development. Journal of Economic Literature 48 424–455.
  • Dobbie, W. and Song, J. (2013). Debt relief and debtor outcomes: Measuring the effects of consumer bankruptcy protection. Unpublished working paper, Dept. Economics, Princeton Univ., Princeton, NJ.
  • Duflo, E., Glennester, R. and Kremer, M. (2007). Using randomization in development economics research: A toolkit. In Handbook of Development Economics, Vol. 4 (T. P. Schultz and J. Strauss, eds.) 3895–3962. North-Holland, Amsterdam.
  • Fisher, R. A. (1925). The Design of Experiments, 1st ed. Oliver & Boyd, London.
  • Frangakis, C. E. and Rubin, D. B. (2002). Principal stratification in causal inference. Biometrics 58 21–29.
  • Freedman, D. A. (2006). Statistical models for causation: What inferential leverage do they provide? Eval. Rev. 30 691–713.
  • Frumento, P., Mealli, F., Pacini, B. and Rubin, D. B. (2012). Evaluating the effect of training on wages in the presence of noncompliance, nonemployment, and missing outcome data. J. Amer. Statist. Assoc. 107 450–466.
  • Gelman, A. and Hill, J. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge Univ. Press, Cambridge.
  • Gill, R. D. and Robins, J. M. (2001). Causal inference for complex longitudinal data: The continuous case. Ann. Statist. 29 1785–1811.
  • Giraud, G. (2003). Strategic market games: An introduction. J. Math. Econom. 39 355–375.
  • Graddy, K. (1995). Who pays more? Essays on bargaining and price discrimination. Ph.D. thesis, Dept. Economics, Princeton Univ., Princeton, NJ.
  • Graddy, K. (1996). Testing for imperfect competition at the Fulton fish market. RAND Journal of Economics 26 75–92.
  • Greene, W. (2011). Econometric Analysis, 7th ed. Prentice Hall, Upper Saddle River, NJ.
  • Greenland, S. (2000). An introducation to instrumental variables for epidemiologists. International Journal of Epidemiology 29 722–729.
  • Griliches, Z. (1977). Estimating the returns to schooling: Some econometric problems. Econometrica 45 1–22.
  • Haavelmo, T. (1943). The statistical implications of a system of simultaneous equations. Econometrica 11 1–12.
  • Haavelmo, T. (1944). The probability approach in econometrics. Econometrica 12 (Supplement) 118 pages.
  • Hahn, J. (2002). Optimal inference with many instruments. Econometric Theory 18 140–168.
  • Hahn, J., Todd, P. and Van der Klaauw, W. (2001). Identification and estimation of treatment effects with a regression-discontinuity design. Econometrica 69 201–209.
  • Hansen, C., Hausman, J. and Newey, W. (2008). Estimation with many instrumental variables. J. Bus. Econom. Statist. 26 398–422.
  • Hausman, J. (1983). Specification and estimation of simultaneous equations models. In Handbook of Econometrics, Vol. 1 (Z. Grilliches and M. D. Intrilligator, eds.). North-Holland, Amsterdam.
  • Hayashi, F. (2000). Econometrics. Princeton Univ. Press, Princeton, NJ.
  • Hearst, N., Newman, T. and Hulley, S. (1986). Delayed effects of the military draft on mortality: A randomized natural experiment. N. Engl. J. Med. 314 620–624.
  • Heckman, J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. Annals of Economic and Social Measurement 5 475–492.
  • Heckman, J. (1979). Sample selection bias as a specification error. Econometrica 47 153–161.
  • Heckman, J. (1990). Varieties of selection bias. American Economic Review: Papers and Proceedings 80 313–318.
  • Heckman, J. and Robb, R. (1985). Alternative methods for evaluating the impact of interventions. In Longitudinal Analysis of Labor Market Data (J. Heckman and B. Singer, eds.). Cambridge Univ. Press, Cambridge.
  • Hendry, D. and Morgan, M. (1992). The Foundations of Econometric Analysis. Cambridge Univ. Press, Cambridge.
  • Hernán, M. and Robins, J. (2006). Instruments for causal inference: An epidemiologist’s dream? Epidemiology 17 360–372.
  • Hillier, G. H. (1990). On the normalization of structural equations: Properties of direction estimators. Econometrica 58 1181–1194.
  • Hirano, K., Imbens, G., Rubin, D. and Zhou, X. (2000). Identification and estimation of local average treatment effects. Biostatistics 1 69–88.
  • Hoderlein, S. and Mammen, E. (2007). Identification of marginal effects in nonseparable models without monotonicity. Econometrica 75 1513–1518.
  • Holland, P. W. (1986). Statistics and causal inference. J. Amer. Statist. Assoc. 81 945–970.
  • Holland, P. (1988). Causal inference, path analysis, and recursive structural equations models. In Sociological Methodology, Chapter 13. American Sociological Association, Washington, DC.
  • Horowitz, J. L. (2011). Applied nonparametric instrumental variables estimation. Econometrica 79 347–394.
  • Horowitz, J. L. and Lee, S. (2007). Nonparametric instrumental variables estimation of a quantile regression model. Econometrica 75 1191–1208.
  • Imbens, G. (1997). Book review of ‘The foundations of econometric analysis,’ by David Hendry and Mary Morgan. J. Appl. Econometrics 12 91–94.
  • Imbens, G. W. (2000). The role of the propensity score in estimating dose-response functions. Biometrika 87 706–710.
  • Imbens, G. (2004). Nonparametric estimation of average treatment effects under exogeneity: A review. Rev. Econom. Statist. 86 1–29.
  • Imbens, G. (2007). Nonadditive models with endogenous regressors. In Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress, Vol. III (R. Blundell, W. Newey and T. Persson, eds.) 17–46. Cambridge Univ. Press, Cambridge.
  • Imbens, G. (2010). Better LATE than nothing: Some comments on Deaton (2009) and Heckman and Urzua (2009). Journal of Economic Literature 48 399–423.
  • Imbens, G. (2014). Matching in practice. Journal of Human Resources. To appear.
  • Imbens, G. and Angrist, J. (1994). Identification and estimation of local average treatment effects. Econometrica 61 467–476.
  • Imbens, G. W. and Newey, W. K. (2009). Identification and estimation of triangular simultaneous equations models without additivity. Econometrica 77 1481–1512.
  • Imbens, G. W. and Rosenbaum, P. R. (2005). Robust, accurate confidence intervals with a weak instrument: Quarter of birth and education. J. Roy. Statist. Soc. Ser. A 168 109–126.
  • Imbens, G. W. and Rubin, D. B. (1997a). Bayesian inference for causal effects in randomized experiments with noncompliance. Ann. Statist. 25 305–327.
  • Imbens, G. W. and Rubin, D. B. (1997b). Estimating outcome distributions for compliers in instrumental variables models. Rev. Econom. Stud. 64 555–574.
  • Imbens, G. and Rubin, D. (2014). Causal Inference for Statistics, Social and Biomedical Sciences: An Introduction. Cambridge Univ. Press, Cambridge.
  • Imbens, G. and Wooldridge, J. (2009). Recent developments in the econometrics of program evaluation. Journal of Economic Literature 47 5–86.
  • Kitagawa, T. (2009). Identification region of the potential outcome distributions under instrument independence. Manuscript, Dept. Economics, Univ. College London.
  • Kleibergen, F. (2002). Pivotal statistics for testing structural parameters in instrumental variables regression. Econometrica 70 1781–1803.
  • Kolesá, M., Chetty, R., Friedman, J. N., Glaeser, E. and Imbens, G. W. (2013). Identification and inference with many invalid instruments. Unpublished manuscript.
  • Kunitomo, N. (1980). Asymptotic expansions of the distributions of estimators in a linear functional relationship and simultaneous equations. J. Amer. Statist. Assoc. 75 693–700.
  • Lauritzen, S. L. and Richardson, T. S. (2002). Chain graph models and their causal interpretations. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 321–361.
  • Leamer, E. (1981). Is it a demand curve, or is it a supply curve? Partial identification through inequality constraints. Rev. Econom. Statist. 63 319–327.
  • Little, R. (1985). A note about models for selectivity bias. Econometrica 53 1469–1474.
  • Little, R. J. A. and Rubin, D. B. (1987). Statistical Analysis with Missing Data. Wiley, New York.
  • Little, R. and Yau, L. (1998). Statistical techniques for analyzing data from prevention trials: Treatment of no-shows using Rubin’s causal model. Psychological Methods 3 147–159.
  • Manski, C. (1990). Nonparametric bounds on treatment effects. American Economic Review: Papers and Proceedings 80 319–323.
  • Manski, C. (1995). Identification Problems in the Social Sciences. Harvard Univ. Press, Cambridge.
  • Manski, C. (2000a). Economic analysis of social interactions. Journal of Economic Perspectives 14 115–136.
  • Manski, C. (2000b). Identification problems and decisions under ambiguity: Empirical analysis of treatment response and normative analysis of treatment choice. J. Econometrics 95 415–442.
  • Manski, C. (2001). Designing programs for heterogenous populations: The value of covariate information. American Economic Review: Papers and Proceedings 91 103–106.
  • Manski, C. F. (2002). Treatment choice under ambiguity induced by inferential problems. J. Statist. Plann. Inference 105 67–82.
  • Manski, C. F. (2003). Partial Identification of Probability Distributions. Springer, New York.
  • Manski, C. F. (2004). Statistical treatment rules for heterogeneous populations. Econometrica 72 1221–1246.
  • Manski, C. F. (2005). Social Choice with Partial Knowledge of Treatment Response. Princeton Univ. Press, Princeton, NJ.
  • Manski, C. (2007). Identification for Prediction and Decision. Princeton Univ. Press, Princeton, NJ.
  • Manski, C. and Nagin, D. (1998). Bounding disagreements about treatment effects: A case study of sentencing and recidivism. Sociological Methodology 28 99–137.
  • Manski, C. F. and Pepper, J. V. (2000). Monotone instrumental variables: With an application to the returns to schooling. Econometrica 68 997–1010.
  • Manski, C., Sandefur, G., McLanahan, S. and Powers, D. (1992). Alternative estimates of the effect of family structure during adolescence on high school. J. Amer. Statist. Assoc. 87 25–37.
  • Martens, E., Pestman, W., de Boer, A., Belitser, S. and Klungel, O. (2006). Instrumental variables: Application and limitations. Epidemiology 17 260–267.
  • Matzkin, R. L. (2003). Nonparametric estimation of nonadditive random functions. Econometrica 71 1339–1375.
  • Matzkin, R. (2007). Nonparametric identification. In Handbook of Econometrics 6B (J. Heckman and E. Leamer, eds.). North-Holland, Amsterdam.
  • Matzkin, R. L. (2008). Identification in nonparametric simultaneous equations models. Econometrica 76 945–978.
  • McClellan, M. and Newhouse, J. P. (1994). Does more intensive treatment of acute myocardial infarction in the elderly reduce mortality. Journal of the American Medical Association 272 859–866.
  • McDonald, C., Hiu, S. and Tierney, W. (1992). Effects of computer reminders for influenza vaccination on morbidity during influenza epidemics. MD Computing 9 304–312.
  • Moreira, M. J. (2003). A conditional likelihood ratio test for structural models. Econometrica 71 1027–1048.
  • Morgan, S. and Winship, C. (2007). Counterfactuals and Causal Inference. Cambridge Univ. Press, Cambridge.
  • Morimune, K. (1983). Approximate distributions of $k$-class estimators when the degree of overidentifiability is large compared with the sample size. Econometrica 51 821–841.
  • Newey, W. K. and Powell, J. L. (2003). Instrumental variable estimation of nonparametric models. Econometrica 71 1565–1578.
  • Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge Univ. Press, Cambridge.
  • Pearl, J. (2011). Principal stratification—A goal or a tool? Int. J. Biostat. 7 Art. 20.
  • Permutt, T. and Hebel, J. (1989). Simultaneous-equation estimation in a clinical trial of the effect of smoking on birth weight. Biometrics 45 619–622.
  • Philipson, T. (1997a). The evaluation of new health care technology: The labor economics of statistics. J. Econometrics 76 375–396.
  • Philipson, T. (1997b). Data markets and the production of surveys. Rev. Econom. Stud. 64 47–73.
  • Philipson, T. and DeSimone, J. (1997). Experiments and subject sampling. Biometrika 84 619–630.
  • Philipson, T. and Hedges, L. (1998). Subject evaluation in social experiments. Econometrica 66 381–408.
  • Phillips, P. C. B. (1989). Partially identified econometric models. Econometric Theory 5 181–240.
  • Plott, C. and Smith, V. (1987). An experimental examination of two exchange institutions. Rev. Econom. Stud. 45 133–153.
  • Pratt, J. and Shlaifer, R. (1984). On the nature and discovery of structure. J. Amer. Statist. Assoc. 79 9–21.
  • Ramsahai, R. R. and Lauritzen, S. L. (2011). Likelihood analysis of the binary instrumental variable model. Biometrika 98 987–994.
  • Richardson, T., Evans, R. and Robins, J. (2011). Transparent parametrizations of models for potential outcomes. In Bayesian Statistics 9 (B. Bayarri, D. Berger and S. Heckerman, eds.). Oxford Univ. Press, Oxford.
  • Richardson, T. and Robins, J. (2013). Single World Intervention Graphs (SWIGs): A unification of the counterfactual and graphical approaches to causality. Working Paper 128, Center for Statistics and the Social Sciences, Univ. Washington, Seattle, WA.
  • Robins, J. (1986). A new approach to causal inference in mortality studies with a sustained exposure period—Application to control of the healthy worker survivor effect. Math. Modelling 7 1393–1512.
  • Robins, J. M. (1989). The analysis of randomized and non-randomized AIDS treatment trials using a new approach to causal inference in longitudinal studies. In Health Service Research Methodology: A Focus on AIDS (L. Sechrest, H. Freeman and A. Bailey, eds.). NCHSR, U.S. Public Health Service, Washington, DC.
  • Robins, J. M. (1994). Correcting for non-compliance in randomized trials using structural nested mean models. Comm. Statist. Theory Methods 23 2379–2412.
  • Robins, J. and Greenland, S. (1996). Comment on: Identification of causal effects using instrumental variables. J. Amer. Statist. Assoc. 91 456–468.
  • Robins, J. and Rotnitzky, A. (2004). Estimation of treatment effects in randomised trials with non-compliance and a dichotomous outcome using structural mean models. Biometrika 91 763–783.
  • Roehrig, C. S. (1988). Conditions for identification in nonparametric and parametric models. Econometrica 56 433–447.
  • Rosenbaum, P. (1996). Comment on: Identification of causal effects using instrumental variables. J. Amer. Statist. Assoc. 91 465–468.
  • Rosenbaum, P. R. (2002). Observational Studies, 2nd ed. Springer, New York.
  • Rosenbaum, P. R. (2010). Design of Observational Studies. Springer, New York.
  • Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70 41–55.
  • Roy, A. (1951). Some thoughts on the distribution of earnings. Oxford Economics Papers 3 135–146.
  • Rubin, D. (1974). Estimating causal effects of treatments in randomized and non-randomized studies. Journal of Educational Psychology 66 688–701.
  • Rubin, D. B. (1976). Inference and missing data. Biometrika 63 581–592.
  • Rubin, D. B. (1978). Bayesian inference for causal effects: The role of randomization. Ann. Statist. 6 34–58.
  • Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley, New York.
  • Rubin, D. B. (1990). Formal modes of statistical inference for causal effects. J. Statist. Plann. Inference 25 279–292.
  • Rubin, D. B. (1996). Multiple imputation after 18$+$ years. J. Amer. Statist. Assoc. 91 473–489. -292.
  • Rubin, D. B. (2006). Matched Sampling for Causal Effects (D. B. Rubin, ed.). Cambridge Univ. Press, Cambridge.
  • Rubin, D. B. and Thomas, N. (1992). Affinely invariant matching methods with ellipsoidal distributions. Ann. Statist. 20 1079–1093.
  • Sargan, J. D. (1958). The estimation of economic relationships using instrumental variables. Econometrica 26 393–415.
  • Shapley, L. and Shubik, M. (1977). Trade using one commodity as a means of payment. Journal of Political Economy 85 937–968.
  • Small, D. S. (2007). Sensitivity analysis for instrumental variables regression with overidentifying restrictions. J. Amer. Statist. Assoc. 102 1049–1058.
  • Smith, V. (1982). Markets as economizers of information: Experimental examination of the Hayek hypothesis. Economic Inquiry 20 165–179.
  • Sommer, A. and Zeger, S. (1991). On estimating efficacy from clinical trials. Stat. Med. 10 45–52.
  • Splawa-Neyman, J. (1990). On the application of probability theory to agricultural experiments. Essay on principles. Section 9. Statist. Sci. 5 465–472. Translated from the Polish and edited by D. M. Da̢browska and T. P. Speed.
  • Staiger, D. and Stock, J. H. (1997). Instrumental variables regression with weak instruments. Econometrica 65 557–586.
  • Stock, J. and Trebbi, F. (2003). Who invented instrumental variable regression? Journal of Economic Perspectives 17 177–194.
  • Stock, J. and Watson, M. (2010). Introduction to Econometrics, 3rd ed. Addison-Wesley, Reading, MA.
  • Strotz, R. H. (1960). Interdependence as a specification error. Econometrica 28 428–442.
  • Strotz, R. H. and Wold, H. O. A. (1960). Recursive vs. nonrecursive systems: An attempt at synthesis. Econometrica 28 417–427.
  • Strotz, R. and Wold, H. (1965). The causal interpretability of structural parameters: A reply. Econometrica 31 449–450.
  • Tan, Z. (2006). Regression and weighting methods for causal inference using instrumental variables. J. Amer. Statist. Assoc. 101 1607–1618.
  • Tan, Z. (2010). Marginal and nested structural models using instrumental variables. J. Amer. Statist. Assoc. 105 157–169.
  • Thistlewaite, D. and Campbell, D. (1960). Regression-discontinuity analysis: An alternative to the ex-post facto experiment. Journal of Educational Psychology 51 309–317.
  • Tinbergen, J. (1930). Bestimmung und Deuting von Angebotskurven. Ein Beispiel. Zeitschrift fur Nationalokonomie 1 669–679. Translated as: Determination and interpretation of supply curves. An example. In The Foundations of Econometric Analysis (D. Hendryand and M. Morgan, eds.) 233–245. Cambridge Univ. Press, Cambridge.
  • Van der Laan, M. J. and Robins, J. M. (2003). Unified Methods for Censored Longitudinal Data and Causality. Springer, New York.
  • Vansteelandt, S., Bowden, J., Babanezhad, M. and Goetghebeur, E. (2011). On instrumental variables estimation of causal odds ratios. Statist. Sci. 26 403–422.
  • Vansteelandt, S. and Goetghebeur, E. (2003). Causal inference with generalized structural mean models. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 817–835.
  • Wold, H. O. A. (1960). A generalization of causal chain models. Econometrica 28 443–463.
  • Wooldridge, J. (2008). Introductory Econometrics. South-Western College Pub., New York.
  • Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data, 2nd ed. MIT Press, Cambridge, MA.
  • Working, E. (1927). What do statistical ‘demand curves’ show? Quarterly Journal of Economics 41 212–235.
  • Wright, P. (1928). The Tariff on Animal and Vegetable Oils. MacMillan, New York.
  • Yau, L. H. Y. and Little, R. J. (2001). Inference for the complier-average causal effect from longitudinal data subject to noncompliance and missing data, with application to a job training assessment for the unemployed. J. Amer. Statist. Assoc. 96 1232–1244.
  • Zelen, M. (1979). A new design for randomized clinical trials. N. Engl. J. Med. 300 1242–1245.
  • Zelen, M. (1990). Randomized consent designs for clinical trials: An update. Stat. Med. 9 645–656.
  • Zhang, J. L., Rubin, D. B. and Mealli, F. (2009). Likelihood-based analysis of causal effects of job-training programs using principal stratification. J. Amer. Statist. Assoc. 104 166–176.

See also

  • Discussion of: Instrumental Variables Before and LATEr.
  • Discussion of: ACE Bounds; SEMs with Equilibrium Conditions.
  • Discussion of: Causal Graphs: Addressing the Confounding Problem Without Instruments or Ignorability.
  • Discussion of: Think Globally, Act Globally: An Epidemiologist's Perspective on Instrumental Variable Estimation.
  • Rejoinder: Rejoinder.