Statistical Science

Instrumental Variables: An Econometrician’s Perspective

Guido W. Imbens

Full-text: Open access

Abstract

I review recent work in the statistics literature on instrumental variables methods from an econometrics perspective. I discuss some of the older, economic, applications including supply and demand models and relate them to the recent applications in settings of randomized experiments with noncompliance. I discuss the assumptions underlying instrumental variables methods and in what settings these may be plausible. By providing context to the current applications, a better understanding of the applicability of these methods may arise.

Article information

Source
Statist. Sci., Volume 29, Number 3 (2014), 323-358.

Dates
First available in Project Euclid: 23 September 2014

Permanent link to this document
https://projecteuclid.org/euclid.ss/1411437513

Digital Object Identifier
doi:10.1214/14-STS480

Mathematical Reviews number (MathSciNet)
MR3264545

Zentralblatt MATH identifier
1331.62471

Keywords
Simultaneous equations models randomized experiments potential outcomes noncompliance selection models

Citation

Imbens, Guido W. Instrumental Variables: An Econometrician’s Perspective. Statist. Sci. 29 (2014), no. 3, 323--358. doi:10.1214/14-STS480. https://projecteuclid.org/euclid.ss/1411437513


Export citation

References

  • Abadie, A. (2002). Bootstrap tests for distributional treatment effects in instrumental variable models. J. Amer. Statist. Assoc. 97 284–292.
  • Abadie, A. (2003). Semiparametric instrumental variable estimation of treatment response models. J. Econometrics 113 231–263.
  • Aizer, A. and Doyle, J. (2013). Juvenile incarceration, human capital, and future crime: Evidence from randomly assigned judges. Unpublished working paper, Dept. Economics, Brown Univ., Providence, RI.
  • Altonji, J. G. and Matzkin, R. L. (2005). Cross section and panel data estimators for nonseparable models with endogenous regressors. Econometrica 73 1053–1102.
  • Anderson, T. W. and Rubin, H. (1949). Estimation of the parameters of a single equation in a complete system of stochastic equations. Ann. Math. Statistics 20 46–63.
  • Andrews, D. W. K., Moreira, M. J. and Stock, J. H. (2006). Optimal two-sided invariant similar tests for instrumental variables regression. Econometrica 74 715–752.
  • Andrews, D. and Stock, J. (2007). Inference with weak instruments. In Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress, Vol. III (R. Blundell, W. Newey and T. Persson, eds.) 122–173. Cambridge Univ. Press, Cambridge.
  • Angrist, J. (1990). Lifetime earnings and the Vietnam era draft lottery: Evidence from social security administrative records. American Economic Review 80 313–335.
  • Angrist, J., Graddy, K. and Imbens, G. (2000). The interpretation of instrumental variables estimators in simultaneous equations models with an application to the demand for fish. Rev. Econom. Stud. 67 499–527.
  • Angrist, J. D. and Imbens, G. W. (1995). Two-stage least squares estimation of average causal effects in models with variable treatment intensity. J. Amer. Statist. Assoc. 90 431–442.
  • Angrist, J., Imbens, G. and Rubin, D. (1996). Identification of causal effects using instrumental variables (with discussion). J. Amer. Statist. Assoc. 91 444–472.
  • Angrist, J. and Krueger, A. (1991). Does compulsory school attendance affect schooling and earnings. Quarterly Journal of Economics 106 979–1014.
  • Angrist, J. and Pischke, S. (2009). Mostly Harmless Econometrics. Princeton Univ. Press, Princeton, NJ.
  • Arellano, M. (2002). Sargan’s instrumental variables estimation and the generalized method of moments. J. Bus. Econom. Statist. 20 450–459.
  • Athey, S. and Stern, S. (1998). An empirical framework for testing theories about complementarity in organizational design. Working Paper 6600, NBER.
  • Baiocchi, M., Small, D. S., Lorch, S. and Rosenbaum, P. R. (2010). Building a stronger instrument in an observational study of perinatal care for premature infants. J. Amer. Statist. Assoc. 105 1285–1296.
  • Balke, A. and Pearl, J. (1995). Counterfactuals and policy analysis in structural models. In Uncertainty in Artificial Intelligence 11 (P. Besnard and S. Hanks, eds.) 11–18. Morgan Kaufmann, San Francisco, CA.
  • Balke, A. and Pearl, J. (1997). Bounds on treatment effects from studies with imperfect compliance. J. Amer. Statist. Assoc. 92 1171–1176.
  • Barnow, B. S., Cain, G. G. and Goldberger, A. S. (1980). Issues in the analysis of selectivity bias. In Evaluation Studies, Vol. 5 (E. Stromsdorfer and G. Farkas, eds.). Sage, San Francisco, CA.
  • Basmann, R. (1963a). The causal interpretation of non-triangular systems of economic relations. Econometrica 31 439–448.
  • Basmann, R. (1963b). On the causal interpretation of non-triangular systems of economic relations: A rejoinder. Econometrica 31 451–453.
  • Basmann, R. (1965). Causal systems and stability: Reply to R. W. Clower. Econometrica 33 242–243.
  • Bekker, P. A. (1994). Alternative approximations to the distributions of instrumental variable estimators. Econometrica 62 657–681.
  • Bekker, P. A. and van der Ploeg, J. (2005). Instrumental variable estimation based on grouped data. Statist. Neerlandica 59 239–267.
  • Benkard, L. and Berry, S. (2006). On the nonparametric identification of nonlinear simultaneous equations models: Comment on Brown (1983) and Roehrig (1988). Econometrica 74 1429–1440.
  • Bound, J., Jaeger, D. and Baker, R. (1995). Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak. J. Amer. Statist. Assoc. 90 443–450.
  • Bowden, R. J. and Turkington, D. A. (1984). Instrumental Variables. Econometric Society Monographs in Quantitative Economics 8. Cambridge Univ. Press, Cambridge.
  • Brookhart, M., Wang, P., Solomon, D. and Schneeweiss, S. (2006). Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable. Epidemiology 17 268–275.
  • Brown, B. W. (1983). The identification problem in systems nonlinear in the variables. Econometrica 51 175–196.
  • Card, D. (1995). Using geographic variation in college proximity to estimate the return to schooling. In Aspects of Labor Market Behaviour: Essays in Honour of John Vanderkamp (L. N. Christofides, E. K. Grant and R. Swidinsky, eds.). Univ. Toronto Press, Toronto.
  • Card, D. (2001). Estimating the return to schooling: Progress on some persistent econometric problems. Econometrica 69 1127–1160.
  • Chalak, K. (2011). Identification of local treatment effects using a proxy for an instrument. Unpublished Manuscript, Dept. Economics, Boston College, Boston, MA.
  • Chamberlain, G. and Imbens, G. (2004). Random effects estimators with many instrumental variables. Econometrica 72 295–306.
  • Chao, J. C. and Swanson, N. R. (2005). Consistent estimation with a large number of weak instruments. Econometrica 73 1673–1692.
  • Chernozhukov, V., Hong, H. and Tamer, E. (2007). Estimation and confidence regions for parameter sets in econometric models. Econometrica 75 1243–1284.
  • Chesher, A. (2003). Identification in nonseparable models. Econometrica 71 1405–1441.
  • Chesher, A. (2010). Instrumental variable models for discrete outcomes. Econometrica 78 575–601.
  • Christ, C. (1994). The Cowles Commission’s contributions to econometrics at Chicago, 1939–1955. Journal of Economic Literature 32 30–59.
  • Cochran, W. G. (1968). The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics 24 295–313.
  • Cochran, W. and Rubin, D. (1973). Controlling bias in observational studies: A review. Sankhyā 35 417–446.
  • Cook, T. D. (2008). “Waiting for life to arrive”: A history of the regression-discontinuity design in psychology, statistics and economics. J. Econometrics 142 636–654.
  • Cox, D. R. (1992). Causality: Some statistical aspects. J. Roy. Statist. Soc. Ser. A 155 291–301.
  • Crépon, B., Duflo, E., Gurgand, M., Rathelot, M. and Zamoray, P. (2012). Do labor market policies have displacement effects? Evidence from a clustered randomized experiment. Unpublished manuscript.
  • Dawid, P. (1984). Causal inference from messy data. Comment on ‘On the nature and discovery of structure’. J. Amer. Statist. Assoc. 79 22–24.
  • Deaton, A. (2010). Instruments, randomization, and learning about development. Journal of Economic Literature 48 424–455.
  • Dobbie, W. and Song, J. (2013). Debt relief and debtor outcomes: Measuring the effects of consumer bankruptcy protection. Unpublished working paper, Dept. Economics, Princeton Univ., Princeton, NJ.
  • Duflo, E., Glennester, R. and Kremer, M. (2007). Using randomization in development economics research: A toolkit. In Handbook of Development Economics, Vol. 4 (T. P. Schultz and J. Strauss, eds.) 3895–3962. North-Holland, Amsterdam.
  • Fisher, R. A. (1925). The Design of Experiments, 1st ed. Oliver & Boyd, London.
  • Frangakis, C. E. and Rubin, D. B. (2002). Principal stratification in causal inference. Biometrics 58 21–29.
  • Freedman, D. A. (2006). Statistical models for causation: What inferential leverage do they provide? Eval. Rev. 30 691–713.
  • Frumento, P., Mealli, F., Pacini, B. and Rubin, D. B. (2012). Evaluating the effect of training on wages in the presence of noncompliance, nonemployment, and missing outcome data. J. Amer. Statist. Assoc. 107 450–466.
  • Gelman, A. and Hill, J. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge Univ. Press, Cambridge.
  • Gill, R. D. and Robins, J. M. (2001). Causal inference for complex longitudinal data: The continuous case. Ann. Statist. 29 1785–1811.
  • Giraud, G. (2003). Strategic market games: An introduction. J. Math. Econom. 39 355–375.
  • Graddy, K. (1995). Who pays more? Essays on bargaining and price discrimination. Ph.D. thesis, Dept. Economics, Princeton Univ., Princeton, NJ.
  • Graddy, K. (1996). Testing for imperfect competition at the Fulton fish market. RAND Journal of Economics 26 75–92.
  • Greene, W. (2011). Econometric Analysis, 7th ed. Prentice Hall, Upper Saddle River, NJ.
  • Greenland, S. (2000). An introducation to instrumental variables for epidemiologists. International Journal of Epidemiology 29 722–729.
  • Griliches, Z. (1977). Estimating the returns to schooling: Some econometric problems. Econometrica 45 1–22.
  • Haavelmo, T. (1943). The statistical implications of a system of simultaneous equations. Econometrica 11 1–12.
  • Haavelmo, T. (1944). The probability approach in econometrics. Econometrica 12 (Supplement) 118 pages.
  • Hahn, J. (2002). Optimal inference with many instruments. Econometric Theory 18 140–168.
  • Hahn, J., Todd, P. and Van der Klaauw, W. (2001). Identification and estimation of treatment effects with a regression-discontinuity design. Econometrica 69 201–209.
  • Hansen, C., Hausman, J. and Newey, W. (2008). Estimation with many instrumental variables. J. Bus. Econom. Statist. 26 398–422.
  • Hausman, J. (1983). Specification and estimation of simultaneous equations models. In Handbook of Econometrics, Vol. 1 (Z. Grilliches and M. D. Intrilligator, eds.). North-Holland, Amsterdam.
  • Hayashi, F. (2000). Econometrics. Princeton Univ. Press, Princeton, NJ.
  • Hearst, N., Newman, T. and Hulley, S. (1986). Delayed effects of the military draft on mortality: A randomized natural experiment. N. Engl. J. Med. 314 620–624.
  • Heckman, J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. Annals of Economic and Social Measurement 5 475–492.
  • Heckman, J. (1979). Sample selection bias as a specification error. Econometrica 47 153–161.
  • Heckman, J. (1990). Varieties of selection bias. American Economic Review: Papers and Proceedings 80 313–318.
  • Heckman, J. and Robb, R. (1985). Alternative methods for evaluating the impact of interventions. In Longitudinal Analysis of Labor Market Data (J. Heckman and B. Singer, eds.). Cambridge Univ. Press, Cambridge.
  • Hendry, D. and Morgan, M. (1992). The Foundations of Econometric Analysis. Cambridge Univ. Press, Cambridge.
  • Hernán, M. and Robins, J. (2006). Instruments for causal inference: An epidemiologist’s dream? Epidemiology 17 360–372.
  • Hillier, G. H. (1990). On the normalization of structural equations: Properties of direction estimators. Econometrica 58 1181–1194.
  • Hirano, K., Imbens, G., Rubin, D. and Zhou, X. (2000). Identification and estimation of local average treatment effects. Biostatistics 1 69–88.
  • Hoderlein, S. and Mammen, E. (2007). Identification of marginal effects in nonseparable models without monotonicity. Econometrica 75 1513–1518.
  • Holland, P. W. (1986). Statistics and causal inference. J. Amer. Statist. Assoc. 81 945–970.
  • Holland, P. (1988). Causal inference, path analysis, and recursive structural equations models. In Sociological Methodology, Chapter 13. American Sociological Association, Washington, DC.
  • Horowitz, J. L. (2011). Applied nonparametric instrumental variables estimation. Econometrica 79 347–394.
  • Horowitz, J. L. and Lee, S. (2007). Nonparametric instrumental variables estimation of a quantile regression model. Econometrica 75 1191–1208.
  • Imbens, G. (1997). Book review of ‘The foundations of econometric analysis,’ by David Hendry and Mary Morgan. J. Appl. Econometrics 12 91–94.
  • Imbens, G. W. (2000). The role of the propensity score in estimating dose-response functions. Biometrika 87 706–710.
  • Imbens, G. (2004). Nonparametric estimation of average treatment effects under exogeneity: A review. Rev. Econom. Statist. 86 1–29.
  • Imbens, G. (2007). Nonadditive models with endogenous regressors. In Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress, Vol. III (R. Blundell, W. Newey and T. Persson, eds.) 17–46. Cambridge Univ. Press, Cambridge.
  • Imbens, G. (2010). Better LATE than nothing: Some comments on Deaton (2009) and Heckman and Urzua (2009). Journal of Economic Literature 48 399–423.
  • Imbens, G. (2014). Matching in practice. Journal of Human Resources. To appear.
  • Imbens, G. and Angrist, J. (1994). Identification and estimation of local average treatment effects. Econometrica 61 467–476.
  • Imbens, G. W. and Newey, W. K. (2009). Identification and estimation of triangular simultaneous equations models without additivity. Econometrica 77 1481–1512.
  • Imbens, G. W. and Rosenbaum, P. R. (2005). Robust, accurate confidence intervals with a weak instrument: Quarter of birth and education. J. Roy. Statist. Soc. Ser. A 168 109–126.
  • Imbens, G. W. and Rubin, D. B. (1997a). Bayesian inference for causal effects in randomized experiments with noncompliance. Ann. Statist. 25 305–327.
  • Imbens, G. W. and Rubin, D. B. (1997b). Estimating outcome distributions for compliers in instrumental variables models. Rev. Econom. Stud. 64 555–574.
  • Imbens, G. and Rubin, D. (2014). Causal Inference for Statistics, Social and Biomedical Sciences: An Introduction. Cambridge Univ. Press, Cambridge.
  • Imbens, G. and Wooldridge, J. (2009). Recent developments in the econometrics of program evaluation. Journal of Economic Literature 47 5–86.
  • Kitagawa, T. (2009). Identification region of the potential outcome distributions under instrument independence. Manuscript, Dept. Economics, Univ. College London.
  • Kleibergen, F. (2002). Pivotal statistics for testing structural parameters in instrumental variables regression. Econometrica 70 1781–1803.
  • Kolesá, M., Chetty, R., Friedman, J. N., Glaeser, E. and Imbens, G. W. (2013). Identification and inference with many invalid instruments. Unpublished manuscript.
  • Kunitomo, N. (1980). Asymptotic expansions of the distributions of estimators in a linear functional relationship and simultaneous equations. J. Amer. Statist. Assoc. 75 693–700.
  • Lauritzen, S. L. and Richardson, T. S. (2002). Chain graph models and their causal interpretations. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 321–361.
  • Leamer, E. (1981). Is it a demand curve, or is it a supply curve? Partial identification through inequality constraints. Rev. Econom. Statist. 63 319–327.
  • Little, R. (1985). A note about models for selectivity bias. Econometrica 53 1469–1474.
  • Little, R. J. A. and Rubin, D. B. (1987). Statistical Analysis with Missing Data. Wiley, New York.
  • Little, R. and Yau, L. (1998). Statistical techniques for analyzing data from prevention trials: Treatment of no-shows using Rubin’s causal model. Psychological Methods 3 147–159.
  • Manski, C. (1990). Nonparametric bounds on treatment effects. American Economic Review: Papers and Proceedings 80 319–323.
  • Manski, C. (1995). Identification Problems in the Social Sciences. Harvard Univ. Press, Cambridge.
  • Manski, C. (2000a). Economic analysis of social interactions. Journal of Economic Perspectives 14 115–136.
  • Manski, C. (2000b). Identification problems and decisions under ambiguity: Empirical analysis of treatment response and normative analysis of treatment choice. J. Econometrics 95 415–442.
  • Manski, C. (2001). Designing programs for heterogenous populations: The value of covariate information. American Economic Review: Papers and Proceedings 91 103–106.
  • Manski, C. F. (2002). Treatment choice under ambiguity induced by inferential problems. J. Statist. Plann. Inference 105 67–82.
  • Manski, C. F. (2003). Partial Identification of Probability Distributions. Springer, New York.
  • Manski, C. F. (2004). Statistical treatment rules for heterogeneous populations. Econometrica 72 1221–1246.
  • Manski, C. F. (2005). Social Choice with Partial Knowledge of Treatment Response. Princeton Univ. Press, Princeton, NJ.
  • Manski, C. (2007). Identification for Prediction and Decision. Princeton Univ. Press, Princeton, NJ.
  • Manski, C. and Nagin, D. (1998). Bounding disagreements about treatment effects: A case study of sentencing and recidivism. Sociological Methodology 28 99–137.
  • Manski, C. F. and Pepper, J. V. (2000). Monotone instrumental variables: With an application to the returns to schooling. Econometrica 68 997–1010.
  • Manski, C., Sandefur, G., McLanahan, S. and Powers, D. (1992). Alternative estimates of the effect of family structure during adolescence on high school. J. Amer. Statist. Assoc. 87 25–37.
  • Martens, E., Pestman, W., de Boer, A., Belitser, S. and Klungel, O. (2006). Instrumental variables: Application and limitations. Epidemiology 17 260–267.
  • Matzkin, R. L. (2003). Nonparametric estimation of nonadditive random functions. Econometrica 71 1339–1375.
  • Matzkin, R. (2007). Nonparametric identification. In Handbook of Econometrics 6B (J. Heckman and E. Leamer, eds.). North-Holland, Amsterdam.
  • Matzkin, R. L. (2008). Identification in nonparametric simultaneous equations models. Econometrica 76 945–978.
  • McClellan, M. and Newhouse, J. P. (1994). Does more intensive treatment of acute myocardial infarction in the elderly reduce mortality. Journal of the American Medical Association 272 859–866.
  • McDonald, C., Hiu, S. and Tierney, W. (1992). Effects of computer reminders for influenza vaccination on morbidity during influenza epidemics. MD Computing 9 304–312.
  • Moreira, M. J. (2003). A conditional likelihood ratio test for structural models. Econometrica 71 1027–1048.
  • Morgan, S. and Winship, C. (2007). Counterfactuals and Causal Inference. Cambridge Univ. Press, Cambridge.
  • Morimune, K. (1983). Approximate distributions of $k$-class estimators when the degree of overidentifiability is large compared with the sample size. Econometrica 51 821–841.
  • Newey, W. K. and Powell, J. L. (2003). Instrumental variable estimation of nonparametric models. Econometrica 71 1565–1578.
  • Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge Univ. Press, Cambridge.
  • Pearl, J. (2011). Principal stratification—A goal or a tool? Int. J. Biostat. 7 Art. 20.
  • Permutt, T. and Hebel, J. (1989). Simultaneous-equation estimation in a clinical trial of the effect of smoking on birth weight. Biometrics 45 619–622.
  • Philipson, T. (1997a). The evaluation of new health care technology: The labor economics of statistics. J. Econometrics 76 375–396.
  • Philipson, T. (1997b). Data markets and the production of surveys. Rev. Econom. Stud. 64 47–73.
  • Philipson, T. and DeSimone, J. (1997). Experiments and subject sampling. Biometrika 84 619–630.
  • Philipson, T. and Hedges, L. (1998). Subject evaluation in social experiments. Econometrica 66 381–408.
  • Phillips, P. C. B. (1989). Partially identified econometric models. Econometric Theory 5 181–240.
  • Plott, C. and Smith, V. (1987). An experimental examination of two exchange institutions. Rev. Econom. Stud. 45 133–153.
  • Pratt, J. and Shlaifer, R. (1984). On the nature and discovery of structure. J. Amer. Statist. Assoc. 79 9–21.
  • Ramsahai, R. R. and Lauritzen, S. L. (2011). Likelihood analysis of the binary instrumental variable model. Biometrika 98 987–994.
  • Richardson, T., Evans, R. and Robins, J. (2011). Transparent parametrizations of models for potential outcomes. In Bayesian Statistics 9 (B. Bayarri, D. Berger and S. Heckerman, eds.). Oxford Univ. Press, Oxford.
  • Richardson, T. and Robins, J. (2013). Single World Intervention Graphs (SWIGs): A unification of the counterfactual and graphical approaches to causality. Working Paper 128, Center for Statistics and the Social Sciences, Univ. Washington, Seattle, WA.
  • Robins, J. (1986). A new approach to causal inference in mortality studies with a sustained exposure period—Application to control of the healthy worker survivor effect. Math. Modelling 7 1393–1512.
  • Robins, J. M. (1989). The analysis of randomized and non-randomized AIDS treatment trials using a new approach to causal inference in longitudinal studies. In Health Service Research Methodology: A Focus on AIDS (L. Sechrest, H. Freeman and A. Bailey, eds.). NCHSR, U.S. Public Health Service, Washington, DC.
  • Robins, J. M. (1994). Correcting for non-compliance in randomized trials using structural nested mean models. Comm. Statist. Theory Methods 23 2379–2412.
  • Robins, J. and Greenland, S. (1996). Comment on: Identification of causal effects using instrumental variables. J. Amer. Statist. Assoc. 91 456–468.
  • Robins, J. and Rotnitzky, A. (2004). Estimation of treatment effects in randomised trials with non-compliance and a dichotomous outcome using structural mean models. Biometrika 91 763–783.
  • Roehrig, C. S. (1988). Conditions for identification in nonparametric and parametric models. Econometrica 56 433–447.
  • Rosenbaum, P. (1996). Comment on: Identification of causal effects using instrumental variables. J. Amer. Statist. Assoc. 91 465–468.
  • Rosenbaum, P. R. (2002). Observational Studies, 2nd ed. Springer, New York.
  • Rosenbaum, P. R. (2010). Design of Observational Studies. Springer, New York.
  • Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70 41–55.
  • Roy, A. (1951). Some thoughts on the distribution of earnings. Oxford Economics Papers 3 135–146.
  • Rubin, D. (1974). Estimating causal effects of treatments in randomized and non-randomized studies. Journal of Educational Psychology 66 688–701.
  • Rubin, D. B. (1976). Inference and missing data. Biometrika 63 581–592.
  • Rubin, D. B. (1978). Bayesian inference for causal effects: The role of randomization. Ann. Statist. 6 34–58.
  • Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley, New York.
  • Rubin, D. B. (1990). Formal modes of statistical inference for causal effects. J. Statist. Plann. Inference 25 279–292.
  • Rubin, D. B. (1996). Multiple imputation after 18$+$ years. J. Amer. Statist. Assoc. 91 473–489. -292.
  • Rubin, D. B. (2006). Matched Sampling for Causal Effects (D. B. Rubin, ed.). Cambridge Univ. Press, Cambridge.
  • Rubin, D. B. and Thomas, N. (1992). Affinely invariant matching methods with ellipsoidal distributions. Ann. Statist. 20 1079–1093.
  • Sargan, J. D. (1958). The estimation of economic relationships using instrumental variables. Econometrica 26 393–415.
  • Shapley, L. and Shubik, M. (1977). Trade using one commodity as a means of payment. Journal of Political Economy 85 937–968.
  • Small, D. S. (2007). Sensitivity analysis for instrumental variables regression with overidentifying restrictions. J. Amer. Statist. Assoc. 102 1049–1058.
  • Smith, V. (1982). Markets as economizers of information: Experimental examination of the Hayek hypothesis. Economic Inquiry 20 165–179.
  • Sommer, A. and Zeger, S. (1991). On estimating efficacy from clinical trials. Stat. Med. 10 45–52.
  • Splawa-Neyman, J. (1990). On the application of probability theory to agricultural experiments. Essay on principles. Section 9. Statist. Sci. 5 465–472. Translated from the Polish and edited by D. M. Da̢browska and T. P. Speed.
  • Staiger, D. and Stock, J. H. (1997). Instrumental variables regression with weak instruments. Econometrica 65 557–586.
  • Stock, J. and Trebbi, F. (2003). Who invented instrumental variable regression? Journal of Economic Perspectives 17 177–194.
  • Stock, J. and Watson, M. (2010). Introduction to Econometrics, 3rd ed. Addison-Wesley, Reading, MA.
  • Strotz, R. H. (1960). Interdependence as a specification error. Econometrica 28 428–442.
  • Strotz, R. H. and Wold, H. O. A. (1960). Recursive vs. nonrecursive systems: An attempt at synthesis. Econometrica 28 417–427.
  • Strotz, R. and Wold, H. (1965). The causal interpretability of structural parameters: A reply. Econometrica 31 449–450.
  • Tan, Z. (2006). Regression and weighting methods for causal inference using instrumental variables. J. Amer. Statist. Assoc. 101 1607–1618.
  • Tan, Z. (2010). Marginal and nested structural models using instrumental variables. J. Amer. Statist. Assoc. 105 157–169.
  • Thistlewaite, D. and Campbell, D. (1960). Regression-discontinuity analysis: An alternative to the ex-post facto experiment. Journal of Educational Psychology 51 309–317.
  • Tinbergen, J. (1930). Bestimmung und Deuting von Angebotskurven. Ein Beispiel. Zeitschrift fur Nationalokonomie 1 669–679. Translated as: Determination and interpretation of supply curves. An example. In The Foundations of Econometric Analysis (D. Hendryand and M. Morgan, eds.) 233–245. Cambridge Univ. Press, Cambridge.
  • Van der Laan, M. J. and Robins, J. M. (2003). Unified Methods for Censored Longitudinal Data and Causality. Springer, New York.
  • Vansteelandt, S., Bowden, J., Babanezhad, M. and Goetghebeur, E. (2011). On instrumental variables estimation of causal odds ratios. Statist. Sci. 26 403–422.
  • Vansteelandt, S. and Goetghebeur, E. (2003). Causal inference with generalized structural mean models. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 817–835.
  • Wold, H. O. A. (1960). A generalization of causal chain models. Econometrica 28 443–463.
  • Wooldridge, J. (2008). Introductory Econometrics. South-Western College Pub., New York.
  • Wooldridge, J. M. (2010). Econometric Analysis of Cross Section and Panel Data, 2nd ed. MIT Press, Cambridge, MA.
  • Working, E. (1927). What do statistical ‘demand curves’ show? Quarterly Journal of Economics 41 212–235.
  • Wright, P. (1928). The Tariff on Animal and Vegetable Oils. MacMillan, New York.
  • Yau, L. H. Y. and Little, R. J. (2001). Inference for the complier-average causal effect from longitudinal data subject to noncompliance and missing data, with application to a job training assessment for the unemployed. J. Amer. Statist. Assoc. 96 1232–1244.
  • Zelen, M. (1979). A new design for randomized clinical trials. N. Engl. J. Med. 300 1242–1245.
  • Zelen, M. (1990). Randomized consent designs for clinical trials: An update. Stat. Med. 9 645–656.
  • Zhang, J. L., Rubin, D. B. and Mealli, F. (2009). Likelihood-based analysis of causal effects of job-training programs using principal stratification. J. Amer. Statist. Assoc. 104 166–176.

See also

  • Discussion of: Instrumental Variables Before and LATEr.
  • Discussion of: ACE Bounds; SEMs with Equilibrium Conditions.
  • Discussion of: Causal Graphs: Addressing the Confounding Problem Without Instruments or Ignorability.
  • Discussion of: Think Globally, Act Globally: An Epidemiologist's Perspective on Instrumental Variable Estimation.
  • Rejoinder: Rejoinder.