Statistical Science

The Two-Piece Normal, Binormal, or Double Gaussian Distribution: Its Origin and Rediscoveries

Kenneth F. Wallis

Full-text: Open access

Abstract

This paper traces the history of the two-piece normal distribution from its origin in the posthumous Kollektivmasslehre (1897) of Gustav Theodor Fechner to its rediscoveries and generalisations. The denial of Fechner’s originality by Karl Pearson, reiterated a century later by Oscar Sheynin, is shown to be without foundation.

Article information

Source
Statist. Sci., Volume 29, Number 1 (2014), 106-112.

Dates
First available in Project Euclid: 9 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.ss/1399645739

Digital Object Identifier
doi:10.1214/13-STS417

Mathematical Reviews number (MathSciNet)
MR3201857

Zentralblatt MATH identifier
1332.60009

Keywords
Gustav Theodor Fechner Gottlob Friedrich Lipps Francis Ysidro Edgeworth Karl Pearson Francis Galton Oscar Sheynin

Citation

Wallis, Kenneth F. The Two-Piece Normal, Binormal, or Double Gaussian Distribution: Its Origin and Rediscoveries. Statist. Sci. 29 (2014), no. 1, 106--112. doi:10.1214/13-STS417. https://projecteuclid.org/euclid.ss/1399645739


Export citation

References

  • Arnold, B. C. and Groeneveld, R. A. (1995). Measuring skewness with respect to the mode. Amer. Statist. 49 34–38.
  • Barnard, G. A. (1989). Sophisticated theory and practice in quality improvement. Philos. Trans. R. Soc. Lond. A 327 581–589.
  • Barnard, G. A. (1995). Pivotal models and the fiducial argument. Internat. Statist. Rev. 63 309–323.
  • Blix, M. and Sellin, P. (1998). Uncertainty bands for inflation forecasts. Working Paper 65, Sveriges Riksbank, Stockholm.
  • Britton, E., Fisher, P. G. and Whitley, J. D. (1998). The Inflation Report projections: Understanding the fan chart. Bank of England Quarterly Bulletin 38 30–37.
  • Cox, D. R. (2001). Biometrika: The first 100 years. Biometrika 88 3–11.
  • De Vries, H. (1894). Ueber halbe Galton-Curven als Zeichen discontinuirlicher Variation. Berichte der Deutschen Botanischen Gesellschaft 12 197–207.
  • Edgeworth, F. Y. (1899). On the representation of statistics by mathematical formulae (Part III). J. Roy. Statist. Soc. 62 373–385.
  • Fechner, G. T. (1860). Elemente der Psychophysik. Breitkopf and Hartel, Leipzig.
  • Fechner, G. T. (ed. Lipps, G. F.) (1897). Kollektivmasslehre Engelmann, Leipzig.
  • Fernández, C. and Steel, M. F. J. (1998). On Bayesian modeling of fat tails and skewness. J. Amer. Statist. Assoc. 93 359–371.
  • Galton, F. (1896). Application of the method of percentiles to Mr. Yule’s data on the distribution of pauperism. J. Roy. Statist. Soc. 59 392–396.
  • Garvin, J. S. and McClean, S. I. (1997). Convolution and sampling theory of the binormal distribution as a prerequisite to its application in statistical process control. The Statistician 46 33–47.
  • Geweke, J. (1989). Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57 1317–1339.
  • Gibbons, J. F. and Mylroie, S. (1973). Estimation of impurity profiles in ion-implanted amorphous targets using joined half-Gaussian distributions. Appl. Phys. Lett. 22 568–569.
  • Hald, A. (1998). A History of Mathematical Statistics from 1750 to 1930. Wiley, New York.
  • John, S. (1982). The three-parameter two-piece normal family of distributions and its fitting. Comm. Statist. A—Theory Methods 11 879–885.
  • Johnson, N. L. and Kotz, S. (1970). Distributions in Statistics. Wiley, New York.
  • Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, Vol. 1, 2nd ed. Wiley, New York.
  • Kimber, A. C. (1985). Methods for the two-piece normal distribution. Comm. Statist. A—Theory Methods 14 235–245.
  • Kotz, S., Kozubowski, T. J. and Podgórski, K. (2001). The Laplace Distribution and Generalizations: A Revisit With Applications to Communications, Economics, Engineering, and Finance. Birkhäuser, Boston, MA.
  • Ludwig, F. (1898). Die pflanzlichen Variationscurven und die Gauss’sche Wahrscheinlichkeitscurve (continuation). Botanisches Centralblatt 73 343–349.
  • Mudholkar, G. S. and Hutson, A. D. (2000). The epsilon-skew-normal distribution for analyzing near-normal data. J. Statist. Plann. Inference 83 291–309.
  • Pearson, K. (1895). Contributions to the mathematical theory of evolution.—II. Skew variation in homogeneous material. Phil. Trans. R. Soc. Lond. A 186 343–414.
  • Pearson, K. (1905). Das fehlergesetz und seine verallgemeinerungen durch Fechner und Pearson. A rejoinder. Biometrika 4 169–212.
  • Pearson, E. S. (1936). Karl Pearson: An appreciation of some aspects of his life and work. Part I: 1857–1906. Biometrika 28 193–257.
  • Porter, T. M. (2004). Karl Pearson: The Scientific Life in a Statistical Age. Princeton Univ. Press, Princeton, NJ.
  • Ranke, K. E. and Greiner, A. (1904). Das Fehlergesetz und seine Verallgemeinerungen durch Fechner und Pearson in ihrer Tragweite für die Anthropologie. Archiv fur Anthropologie 2 295–332.
  • Runnenburg, J. T. (1978). Mean, median, mode. Stat. Neerl. 32 73–79.
  • Sheynin, O. (2004). Fechner as a statistician. British J. Math. Statist. Psych. 57 53–72.
  • Stigler, S. M. (1986). The History of Statistics: The Measurement of Uncertainty Before 1900. The Belknap Press of Harvard Univ. Press, Cambridge, MA.
  • Stigler, S. M. (1999). Statistics on the Table: The History of Statistical Concepts and Methods. Harvard Univ. Press, Cambridge, MA.
  • Stigler, S. M. (2008). Karl Pearson’s theoretical errors and the advances they inspired. Statist. Sci. 23 261–271.
  • Toth, Z. and Szentimrey, T. (1990). The binormal distribution: A distribution for representing asymmetrical but normal-like weather elements. J. Climate 3 128–136.
  • Yule, G. U. (1896a). Notes on the history of pauperism in England and Wales from 1850, treated by the method of frequency-curves; with an introduction on the method (with discussion). J. Roy. Statist. Soc. 59 318–357.
  • Yule, G. U. (1896b). Remarks on Mr. Galton’s note. J. Roy. Statist. Soc. 59 396–398.
  • Zhu, D. and Galbraith, J. W. (2010). A generalized asymmetric Student-$t$ distribution with application to financial econometrics. J. Econometrics 157 297–305.