Statistical Science

Bayesian Population Projections for the United Nations

Adrian E. Raftery, Leontine Alkema, and Patrick Gerland

Full-text: Open access

Abstract

The United Nations regularly publishes projections of the populations of all the world’s countries broken down by age and sex. These projections are the de facto standard and are widely used by international organizations, governments and researchers. Like almost all other population projections, they are produced using the standard deterministic cohort-component projection method and do not yield statements of uncertainty. We describe a Bayesian method for producing probabilistic population projections for most countries which are projections that the United Nations could use. It has at its core Bayesian hierarchical models for the total fertility rate and life expectancy at birth. We illustrate the method and show how it can be extended to address concerns about the UN’s current assumptions about the long-term distribution of fertility. The method is implemented in the R packages bayesTFR, bayesLife, bayesPop and bayesDem.

Article information

Source
Statist. Sci., Volume 29, Number 1 (2014), 58-68.

Dates
First available in Project Euclid: 9 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.ss/1399645729

Digital Object Identifier
doi:10.1214/13-STS419

Mathematical Reviews number (MathSciNet)
MR3201847

Zentralblatt MATH identifier
1332.62428

Keywords
Bayesian hierarchical model cohort component projection method double logistic function Leslie matrix life expectancy total fertility rate

Citation

Raftery, Adrian E.; Alkema, Leontine; Gerland, Patrick. Bayesian Population Projections for the United Nations. Statist. Sci. 29 (2014), no. 1, 58--68. doi:10.1214/13-STS419. https://projecteuclid.org/euclid.ss/1399645729


Export citation

References

  • Alho, J. M. and Spencer, B. D. (2005). Statistical Demography and Forecasting. Springer, New York.
  • Alkema, L., Raftery, A. E., Gerland, P., Clark, S. J., Pelletier, F., Buettner, T. and Heilig, G. K. (2011). Probabilistic projections of the total fertility rate for all countries. Demography 48 815–839.
  • Basten, S. A., Coleman, D. A. and Gu, B. (2012). Re-examining the fertility assumptions in the UN’s 2010 World Population Prospects: Intentions and fertility recovery in East Asia? Presented at the Annual Meeting of the Population Association of America, San Francisco. Available at http://paa2012.princeton.edu/sessionViewer.aspx?SessionId=112.
  • Brouhns, N., Denuit, M. and Vermunt, J. K. (2002). A Poisson log-bilinear regression approach to the construction of projected lifetables. Insurance Math. Econom. 31 373–393.
  • Caswell, H. (2006). Matrix Population Models: Construction, Analysis and Interpretation. Sinaurer, Sunderland.
  • Czado, C., Delwarde, A. and Denuit, M. (2005). Bayesian Poisson log-bilinear mortality projections. Insurance Math. Econom. 36 260–284.
  • Daponte, B. O., Kadane, J. B. and Wolfson, L. J. (1997). Bayesian demography: Projecting the Iraqi Kurdish population, 1977–1990. J. Amer. Statist. Assoc. 92 1256–1267.
  • El-Badry, M. A. and Kono, S. (1986). Demographic estimates and projections. Population Bulletin of the United Nations 19/20 35–43.
  • Fienberg, S. E. (2011). Bayesian models and methods in public policy and government settings (with discussion). Statist. Sci. 26 212–239.
  • Girosi, F. and King, G. (2008). Demographic Forecasting. Princeton Univ. Press, Princeton, NJ.
  • Hirschman, C. (1994). Why fertility changes. Annu. Rev. Sociol. 20 203–233.
  • Intergovernmental Panel on Climate Change (2007). Climate Change 2007: Synthesis report, IPCC, Geneva, Switzerland.
  • Keilman, N., Pham, D. Q. and Hetland, A. (2002). Why population forecasts should be probabilistic—illustrated by the case of Norway. Demographic Research 6 409–454.
  • Keyfitz, N. and Caswell, H. (2005). Applied Mathematical Demography, 3rd ed. Springer, New York.
  • Lalic, N. (2011). Joint probabilistic projection of female and male life expectancy. Master’s thesis, Dept. Statistics, Univ. Washington, Seattle, WA.
  • Lee, R. D. (2011). The outlook for population growth. Science 333 569–573.
  • Lee, R. D. and Carter, L. (1992). Modeling and forecasting the time series of US mortality. J. Amer. Statist. Assoc. 87 659–671.
  • Lee, R. D. and Tuljapurkar, S. (1994). Stochastic population forecasts for the United States: Beyond high, medium, and low. J. Amer. Statist. Assoc. 89 1175–1189.
  • Leslie, P. H. (1945). On the use of matrices in certain population mathematics. Biometrika 33 183–212.
  • Lutz, W. and Samir, K. C. (2010). Dimensions of global population projections: What do we know about future population trends and structures? Philosophical Transactions of the Royal Society B 365 2779–2791.
  • Lutz, W., Sanderson, W. C. and Scherbov, S. (1998). Expert-based probabilistic population projections. Population and Development Review 24 139–155.
  • Lutz, W., Sanderson, W. C. and Scherbov, S. (2004). The End of World Population Growth in the 21st Century: New Challenges for Human Capital Formation and Sustainable Development. Sterling, Earthscan, VA.
  • Lutz, W., Sanderson, W. C. and Scherbov, S. (2008). IIASA’s 2007 probabilistic world population projections, IIASA world population program online data base of results. Available at http://www.iiasa.ac.at/Research/POP/proj07/index.html?sb=5.
  • Myrskyla, M., Kohler, H. P. and Billari, F. C. (2009). Advances in development reverse fertility declines. Nature 460 741–743.
  • National Research Council (2000). Beyond Six Billion: Forecasting the World’s Population. National Academy Press, Washington, DC.
  • Oeppen, J. and Vaupel, J. W. (2002). Broken limits to life expectancy. Science 296 1029–1031.
  • Pedroza, C. (2006). A Bayesian forecasting model: Predicting U.S. male mortality. Biostatistics 7 530–550.
  • Preston, S. H., Heuveline, P. and Guillot, M. (2001). Demography: Measuring and Modeling Population Processes. Blackwell, Malden, MA.
  • Raftery, A. E., Li, N., Ševčíková, H., Gerland, P. and Heilig, G. K. (2012). Bayesian probabilistic population projections for all countries. Proc. Natl. Acad. Sci. USA 109 13915–13921.
  • Raftery, A. E., Chunn, J. L., Gerland, P. and Ševčíková, H. (2013). Bayesian probabilistic projections of life expectancy for all countries. Demography 50 777–801.
  • Seto, K. C., Güneral, B. and Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 109 16083–16088.
  • United Nations (2006). World Population Prospects: The 2004 Revision. Volume III: Analytical report, United Nations, New York.
  • United Nations (2009). World Population Prospects: The 2008 Revision. United Nations, New York.
  • United Nations (2011a). World Population Prospects: The 2010 Revision. Special Aggregates—DVD-ROM Edition—Dataset in Excel and ASCII format. United Nations Publication ST/ESA/SER.A/311, Population Division, Dept. Economic and Social Affairs, United Nations. Available at http://esa.un.org/unpd/wpp/Other-Information/WPP2010_SpecialAggregates - list of groupings.pdf.
  • United Nations (2011b). World Population Prospects: The 2010 Revision. United Nations, New York.
  • United Nations Population Division (2009). Expert group meeting on recent and future trends in fertility. Avail-able at http://www.un.org/esa/population/meetings/EGM-Fertility2009/egm-fertility2009.html.
  • Ševčíková, H. (2011). bayesDem: Graphical user interface for bayesTFR, bayesLife and bayesPop. R package Version 1.6-0.
  • Ševčíková, H., Alkema, L. and Raftery, A. E. (2011). bayesTFR: An R package for probabilistic projections of the total fertility rate. Journal of Statistical Software 43 1–29.
  • Ševčíková, H. and Raftery, A. E. (2011). bayesLife: Bayesian projection of life expectancy. R package Version 0.4-0.
  • Ševčíková, H. and Raftery, A. E. (2012). bayesPop: Probabilistic population projection. R package Version 1.0-3.
  • Whelpton, P. K. (1936). An empirical method for calculating future population. J. Amer. Statist. Assoc. 31 457–473.