Statistical Science

Bayesian Estimation of Population-Level Trends in Measures of Health Status

Mariel M. Finucane, Christopher J. Paciorek, Goodarz Danaei, and Majid Ezzati

Full-text: Open access

Abstract

Improving health worldwide will require rigorous quantification of population-level trends in health status. However, global-level surveys are not available, forcing researchers to rely on fragmentary country-specific data of varying quality. We present a Bayesian model that systematically combines disparate data to make country-, region- and global-level estimates of time trends in important health indicators.

The model allows for time and age nonlinearity, and it borrows strength in time, age, covariates, and within and across regional country clusters to make estimates where data are sparse. The Bayesian approach allows us to account for uncertainty from the various aspects of missingness as well as sampling and parameter uncertainty. MCMC sampling allows for inference in a high-dimensional, constrained parameter space, while providing posterior draws that allow straightforward inference on the wide variety of functionals of interest.

Here we use blood pressure as an example health metric. High blood pressure is the leading risk factor for cardiovascular disease, the leading cause of death worldwide. The results highlight a risk transition, with decreasing blood pressure in high-income regions and increasing levels in many lower-income regions.

Article information

Source
Statist. Sci. Volume 29, Number 1 (2014), 18-25.

Dates
First available in Project Euclid: 9 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.ss/1399645724

Digital Object Identifier
doi:10.1214/13-STS427

Mathematical Reviews number (MathSciNet)
MR3201842

Zentralblatt MATH identifier
1305.53037

Keywords
Bayesian inference hierarchical models combining data sources

Citation

Finucane, Mariel M.; Paciorek, Christopher J.; Danaei, Goodarz; Ezzati, Majid. Bayesian Estimation of Population-Level Trends in Measures of Health Status. Statist. Sci. 29 (2014), no. 1, 18--25. doi:10.1214/13-STS427. https://projecteuclid.org/euclid.ss/1399645724


Export citation

References

  • Danaei, G., Finucane, M. M., Lu, Y., Singh, G. M., Cowan, M. J., Paciorek, C. J., Lin, J. K., Farzadfar, F., Khang, Y. H., Stevens, G. A., Rao, M., Ali, M. K., Riley, L. M., Robinson, C. A. and Ezzati, M. on behalf of the Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (2011a). National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. The Lancet 378 31–40.
  • Danaei, G., Finucane, M. M., Lin, J. K., Singh, G. M., Paciorek, C. J., Cowan, M. J., Farzadfar, F., Stevens, G. A., Lim, S. S., Riley, L. M. and Ezzati, M. on behalf of the Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (2011b). National, regional, and global trends in systolic blood pressure since 1980: Systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5.4 million participants. The Lancet 377 568–577.
  • Farzadfar, F., Finucane, M. M., Danaei, G., Pelizzari, P. M., Cowan, M. J., Paciorek, C. J., Singh, G. M., Lin, J. K., Stevens, G. A., Riley, L. M. and Ezzati, M. on behalf of the Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (2011). National, regional, and global trends in serum total cholesterol since 1980: Systematic analysis of health examination surveys and epidemiological studies with 321 country-years and 3.0 million participants. The Lancet 377 578–586.
  • Finucane, M. M., Stevens, G. A., Cowan, M. J., Danaei, G., Lin, J. K., Paciorek, C. J., Singh, G. M., Gutierrez, H. R., Lu, Y., Bahalim, A. N., Farzadfar, F., Riley, L. M. and Ezzati, M. on behalf of the Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (2011). National, regional, and global trends in body mass index since 1980: Systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. The Lancet 377 557–567.
  • Flenady, V., Koopmans, L., Middleton, P., Frøen, J. F., Smith, G. C., Gibbons, K., Coory, M., Gordon, A., Ellwood, D., McIntyre, H. D. et al. (2011). Major risk factors for stillbirth in high-income countries: A systematic review and meta-analysis. The Lancet 377 1331–1340.
  • Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1 515–533 (electronic).
  • Hogan, M. C., Foreman, K. J., Naghavi, M., Ahn, S. Y., Wang, M., Makela, S. M., Lopez, A. D., Lozano, R. and Murray, C. J. L. (2010). Maternal mortality for 181 countries, 1980–2008: A systematic analysis of progress towards Millennium Development Goal 5. The Lancet 375 1609–1623.
  • Kearney, P. M., Whelton, M., Reynolds, K., Whelton, P. K. and He, J. (2004). Worldwide prevalence of hypertension: A systematic review. Journal of Hypertension 22 11–19.
  • Kearney, P. M., Whelton, M., Reynolds, K., Muntner, P., Whelton, P. K. and He, J. (2005). Global burden of hypertension: Analysis of worldwide data. The Lancet 365 217–223.
  • Lawes, C. M., Vander Hoorn, S., Law, M. R., Elliott, P., MacMahon, S. and Rodgers, A. (2004). High blood pressure. In Comparative Quantification of Health Risks (M. Ezzati, A. D. Lopez, A. Rodgers and C. J. L. Murray, eds.) 497–596. World Health Organization, Geneva.
  • Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-Rohani, H., Amann, M., Anderson, H. R., Andrews, K. G., Aryee, M. et al. (2013). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380 2224–2260.
  • Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., Abraham, J., Adair, T., Aggarwal, R., Ahn, S. Y. et al. (2013). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380 2095–2128.
  • Rajaratnam, J. K., Marcus, J. R., Levin-Rector, A., Chalupka, A. N., Wang, H., Dwyer, L., Costa, M., Lopez, A. D. and Murray, C. J. L. (2010). Worldwide mortality in men and women aged 15–59 years from 1970 to 2010: A systematic analysis. The Lancet 375 1704–1720.
  • Rue, H. and Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications. Monographs on Statistics and Applied Probability 104. Chapman & Hall/CRC, Boca Raton, FL.
  • Singh, G. M., Danaei, G., Pelizzari, P. M., Lin, J. K., Cowan, M. J., Stevens, G. A., Farzadfar, F., Khang, Y.-H., Lu, Y., Riley, L. M., Lim, S. S. and Ezzati, M. (2012). The age associations of blood pressure, cholesterol, and glucose: Analysis of health examination surveys from international populations. Circulation 125 2204–2211.
  • WHO (2011). Global Status Report on Noncommunicable Diseases. World Health Organization, Geneva.
  • Woolf, S. G. and Aron, L., eds. (2013). U.S. Health in International Perspective: Shorter Lives, Poorer Health. The National Academies Press, Panel on Understanding Cross-National Health Differences Among High-Income Countries, Washington, DC.