Statistical Science

Estimation of HIV Burden through Bayesian Evidence Synthesis

Daniela De Angelis, Anne M. Presanis, Stefano Conti, and A. E. Ades

Full-text: Open access

Abstract

Planning, implementation and evaluation of public health policies to control the human immunodeficiency virus (HIV) epidemic require regular monitoring of disease burden. This includes the proportion living with HIV, whether diagnosed or not, and the rate of new infections in the general population and in specific risk groups and regions. Estimation of these quantities is not straightforward: data informing them directly are not typically available, but a wealth of indirect information from surveillance systems and ad hoc studies can inform functions of these quantities. In this paper we show how the estimation problem can be successfully solved through a Bayesian evidence synthesis approach, relaxing the focus on “best available” data to which classical methods are typically restricted. This more comprehensive and flexible use of evidence has led to the adoption of our proposed approach as the official method to estimate HIV prevalence in the United Kingdom since 2005.

Article information

Source
Statist. Sci., Volume 29, Number 1 (2014), 9-17.

Dates
First available in Project Euclid: 9 May 2014

Permanent link to this document
https://projecteuclid.org/euclid.ss/1399645723

Digital Object Identifier
doi:10.1214/13-STS428

Mathematical Reviews number (MathSciNet)
MR3201841

Zentralblatt MATH identifier
1332.62409

Keywords
Bayesian inference evidence synthesis graphical model HIV disease burden

Citation

De Angelis, Daniela; Presanis, Anne M.; Conti, Stefano; Ades, A. E. Estimation of HIV Burden through Bayesian Evidence Synthesis. Statist. Sci. 29 (2014), no. 1, 9--17. doi:10.1214/13-STS428. https://projecteuclid.org/euclid.ss/1399645723


Export citation

References

  • Ades, A. E. and Sutton, A. J. (2006). Multiparameter evidence synthesis in epidemiology and medical decision-making: Current approaches. J. Roy. Statist. Soc. Ser. A 169 5–35.
  • Birrell, P. J., Ketsetzis, G., Gay, N. J., Cooper, B. S., Presanis, A. M., Harris, R. J., Charlett, A., Zhang, X.-S., White, P. J., Pebody, R. G. and De Angelis, D. (2011). Bayesian modeling to unmask and predict influenza A/H1N1pdm dynamics in London. Proc. Natl. Acad. Sci. USA 108 18238–18243.
  • Box, G. E. P. (1980). Sampling and Bayes’ inference in scientific modelling and robustness. J. Roy. Statist. Soc. Ser. A 143 383–430.
  • Brookmeyer, R. (2010). Measuring the HIV/AIDS epidemic: Approaches and challenges. Epidemiol. Rev. 32 26–37.
  • Clark, J. S., Bell, D., Chu, C., Courbaud, B., Dietze, M., Hersh, M., HilleRisLambers, J., Ibáñez, I., LaDeau, S., McMahon, S., Metcalf, J., Mohan, J., Moran, E., Pangle, L., Pearson, S., Salk, C., Shen, Z., Valle, D. and Wyckoff, P. (2010). High-dimensional coexistence based on individual variation: A synthesis of evidence. Ecological Monographs 80 569–608.
  • Conti, S., Presanis, A. M., van Veen, M. G., Xiridou, M., Donoghoe, M. C., Rinder Stengaard, A. and De Angelis, D. (2011). Modeling of the HIV infection epidemic in the Netherlands: A multi-parameter evidence synthesis approach. Ann. Appl. Stat. 5 2359–2384.
  • Dominici, F., Parmigiani, G., Wolpert, R. L. and Hasselblad, V. (1999). Meta-analysis of migraine headache treatments: Combining information from heterogeneous designs. J. Amer. Statist. Assoc. 94 16–28.
  • Eddy, D. M., Hasselblad, V. and Shachter, R. (1992). Meta-Analysis by the Confidence Profile Method. Academic Press, Boston.
  • Ghys, P. D., Walker, N., McFarland, W., Miller, R. and Garnett, G. P. (2008). Improved data, methods and tools for the 2007 HIV and AIDS estimates and projections. Sexually Transmitted Infections 84 i1–i4.
  • Goubar, A., Ades, A. E., De Angelis, D., McGarrigle, C. A., Mercer, C. H., Tookey, P. A., Fenton, K. and Gill, O. N. (2008). Estimates of human immunodeficiency virus prevalence and proportion diagnosed based on Bayesian multiparameter synthesis of surveillance data. J. Roy. Statist. Soc. Ser. A 171 541–580.
  • Govan, L., Ades, A. E., Weir, C. J., Welton, N. J. and Langhorne, P. (2010). Controlling ecological bias in evidence synthesis of trials reporting on collapsed and overlapping covariate categories. Stat. Med. 29 1340–1356.
  • Joint United Nations Programme on HIV/AIDS (2010). Global Report UNAIDS Report on the Global AIDS Epidemic. UNAIDS.
  • Lauritzen, S. L. (1996). Graphical Models. Oxford Statistical Science Series 17. The Clarendon Press Oxford Univ. Press, New York.
  • Lunn, D. J., Thomas, A., Best, N. and Spiegelhalter, D. (2000). WinBUGS—A Bayesian modelling framework: Concepts, structure, and extensibility. Statist. Comput. 10 325–337.
  • Lyerla, R., Gouws, E., García-Calleja, J. M. and Zaniewski, E. (2006). The 2005 Workbook: An improved tool for estimating HIV prevalence in countries with low level and concentrated epidemics. Sexually Transmitted Infections 82 iii41–iii44.
  • McGarrigle, C. A., Cliffe, S., Copas, A. J., Mercer, C. H., De Angelis, D., Fenton, K. A., Evans, B. G., Johnson, A. M. and Gill, O. N. (2006). Estimating adult HIV prevalence in the UK in 2003: The direct method of estimation. Sexually Transmitted Infections 82 78–86.
  • O’Hagan, A. (2003). HSSS model criticism. In Highly Structured Stochastic Systems. Oxford Statist. Sci. Ser. 27 423–453. Oxford Univ. Press, Oxford.
  • Presanis, A. M. (2010). Evidence synthesis methods to estimate disease prevalence, incidence and transmission, with application to HIV. Ph.D. thesis, MRC BSU, Univ. Cambridge, Cambridge.
  • Presanis, A. M., De Angelis, D., Spiegelhalter, D. J., Seaman, S., Goubar, A. and Ades, A. E. (2008). Conflicting evidence in a Bayesian synthesis of surveillance data to estimate human immunodeficiency virus prevalence. J. Roy. Statist. Soc. Ser. A 171 915–937.
  • Presanis, A. M., Gill, O. N., Chadborn, T. R., Hill, C., Hope, V., Logan, L., Rice, B. D., Delpech, V. C., Ades, A. E. and Angelis, D. D. (2010). Insights into the rise in HIV infections, 2001 to 2008: A Bayesian synthesis of prevalence evidence. AIDS 24 2849–2858.
  • Presanis, A. M., Angelis, D. D., Goubar, A., Gill, O. N. and Ades, A. E. (2011). Bayesian evidence synthesis for a transmission dynamic model for HIV among men who have sex with men. Biostatistics 12 666–681.
  • Spiegelhalter, D. J., Abrams, K. R. and Myles, J. P. (2004). Bayesian Approaches To Clinical Trials And Health-Care Evaluation. Wiley, Chichester, UK.
  • Spiegelhalter, D. J. and Best, N. G. (2003). Bayesian approaches to multiple sources of evidence and uncertainty in complex cost-effectiveness modelling. Stat. Med. 22 3687–3709.
  • Sutton, A. J., Abrams, K. R., Jones, D. R., Sheldon, T. A. and Song, F. (2000). Methods for Meta-Analysis in Medical Research. Wiley, Chichester.
  • van Veen, M. G., Presanis, A. M., Conti, S., Xiridou, M., Stengaard, A. R., Donoghoe, M. C., van Sighem, A. I., van der Sande, M. A. andDe Angelis, D. (2011). National estimate of HIV prevalence in the Netherlands: Comparison and applicability of different estimation tools. AIDS 25 229–237.
  • Walker, K., Seaman, S. R., Angelis, D. D., Presanis, A. M., Dodds, J. P., Johnson, A. M., Mercey, D., Gill, O. N. and Copas, A. J. (2011). A synthesis of convenience survey and other data to estimate undiagnosed HIV infection among men who have sex with men in England and Wales. Int. J. Epidemiol. 40 1358–1366.