Statistical Science

Wildfire Prediction to Inform Fire Management: Statistical Science Challenges

S. W. Taylor, Douglas G. Woolford, C. B. Dean, and David L. Martell

Full-text: Open access

Abstract

Wildfire is an important system process of the earth that occurs across a wide range of spatial and temporal scales. A variety of methods have been used to predict wildfire phenomena during the past century to better our understanding of fire processes and to inform fire and land management decision-making. Statistical methods have an important role in wildfire prediction due to the inherent stochastic nature of fire phenomena at all scales.

Predictive models have exploited several sources of data describing fire phenomena. Experimental data are scarce; observational data are dominated by statistics compiled by government fire management agencies, primarily for administrative purposes and increasingly from remote sensing observations. Fires are rare events at many scales. The data describing fire phenomena can be zero-heavy and nonstationary over both space and time. Users of fire modeling methodologies are mainly fire management agencies often working under great time constraints, thus, complex models have to be efficiently estimated.

We focus on providing an understanding of some of the information needed for fire management decision-making and of the challenges involved in predicting fire occurrence, growth and frequency at regional, national and global scales.

Article information

Source
Statist. Sci., Volume 28, Number 4 (2013), 586-615.

Dates
First available in Project Euclid: 3 December 2013

Permanent link to this document
https://projecteuclid.org/euclid.ss/1386078880

Digital Object Identifier
doi:10.1214/13-STS451

Mathematical Reviews number (MathSciNet)
MR3161589

Zentralblatt MATH identifier
1331.86029

Keywords
Environmetrics forest fire prediction review wildland fire

Citation

Taylor, S. W.; Woolford, Douglas G.; Dean, C. B.; Martell, David L. Wildfire Prediction to Inform Fire Management: Statistical Science Challenges. Statist. Sci. 28 (2013), no. 4, 586--615. doi:10.1214/13-STS451. https://projecteuclid.org/euclid.ss/1386078880


Export citation

References

  • Abell, C. (1940). Rates of Initial Spread of Free-Burning Fires on the National Forests of California. California Forest Research Experiment Station, USDA Forest Service, Berkeley, CA.
  • Agee, J. (1996). Methods for fire history. In Fire Ecology of Pacific Northwest Forests. Island Press, Washington, DC.
  • Ainsworth, A. and Kauffman, J. B. (2009). Response of native Hawaiian woody species to laval-ignited wildfires in tropical forests and shrublands. Plant Ecology 201 197–209.
  • Albert-Green, A., Dean, C. B., Martell, D. L. and Woolford, D. G. (2013). A methodology for investigating trends in changes in the timing of the fire season with applications to lightning-caused forest fires in Alberta and Ontario, Canada. Canadian Journal of Forest Research 43 39–45.
  • Albini, F. A. (1976). Estimating Wildfire Behavior and Effects. Intermountain Forest and Range Experiment Station, Forest Service, US Dept. Agriculture, Ogden, UT.
  • Albini, F. A. (1984). Wildland fires: Predicting the behavior of wildland fires—among nature’s most potent forces—can save lives, money, and natural resources. American Scientist 72 590–597.
  • Alexander, M. E. and Cruz, M. G. (2013). Limitations on the accuracy of model predictions of wildland fire behaviour: A state-of-the-knowledge review. Forestry Chronicle 89 370–381.
  • Alexander, M. E. and Taylor, S. W. (2010). Wildland fire behaviour case studies and the 1938 Honey Fire controversy. Fire Management Today 70 15–25.
  • Anderson, H. E. (1983). Predicting Wind-Driven Wild Land Fire Size and Shape. US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT.
  • Anderson, K. R. (2002). Fire growth modelling at multiple scales. In Forest Fire Research & Wildland Fire Safety. Proceedings of IV International Conference on Forest Fire Research/2002 Wildland Fire Safety Summit 18–23. Milpress, Rotterdam.
  • Anderson, K. R. (2010). A climatologically based long-range fire growth model. International Journal of Wildland Fire 19 879–894.
  • Anderson, K. R., Flannigan, M. and Reuter, G. (2005). Using ensemble techniques in fire-growth modelling. In Sixth Symposium on Fire and Forest Meteorology. American Meteorological Society, Boston, MA.
  • Andreae, M. O. and Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15 955–966.
  • Andrews, P. L. (1986). BEHAVE: Fire Behavior Prediction and Fuel Modeling System-BURN Subsystem, Part 1. USDA Forest Service, Ogden, UT.
  • Andrews, P., Finney, M. and Fischetti, M. (2007). Predicting wildfires. Scientific American 297 46–55.
  • Arca, B., Duce, P., Laconi, M., Pellizaro, G., Salis, M. and Spano, D. (2007). Evaluation of FARSITE simulator in Mediterranean maquis. International Journal of Wildland Fire 16 563–572.
  • Arno, S. F., Sneck, K. M. and Forest, I. (1977). A Method for Determining Fire History in Coniferous Forests of the Mountain West. Intermountain Forest and Range Experiment Station, Forest Service, US Dept. Agriculture, Ogden, TU.
  • Baker, W. L. (1989). Landscape ecology and nature reserve design in the Boundary Waters Canoe Area, Minnesota. Ecology 70 23–35.
  • Balshi, M. S., McGuire, A. D., Duffy, P., Flannigan, M., Walsh, J. and Melillo, J. (2008). Assessing the response of area burned to changing climate in western boreal North Americal using a Multivariate Adaptive Regression Splines (MARS) approach. Global Change Biology 15 578–600.
  • Beall, H. (1949). An outline of forest fire protection standards. Forestry Chronicle 25 82–106.
  • Beck, J., Alexander, M., Harvey, S. and Beaver, A. (2002). Forecasting diurnal variations in fire intensity to enhance wildland firefighter safety. International Journal of Wildland Fire 11 173–182.
  • Beverly, J. L. and Wotton, B. M. (2007). Modelling the probability of sustained flaming: Predictive value of fire weather index components compared with observations of site weather and fuel moisture conditions. International Journal of Wildland Fire 16 161–173.
  • Bigley, G. A. and Roberts, K. H. (2001). The indident command system: High-reliability organizing for complex and volatile task environments. Academy of Management Journal 44 1281–1299.
  • Bjornsen, R. (1968). Infrared mapping of large fires. In Fifth Symposium on Remote Sensing of the Environment 459–464. Univ. Michigan, Ann Arbor, MI.
  • Bond, T., Doherty, S., Fahey, D., Forster, P., Berntsen, T., DeAngelo, B., Flanner, M., Ghan, S., Karcher, B. and Koch, D. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres 118 1–173.
  • Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D’Antonio, C. M., DeFries, R. S., Doyle, J. C. and Harrison, S. P. (2009). Fire in the Earth system. Science 324 481–484.
  • Boychuk, D., Braun, W. J., Kulperger, R. J., Krougly, Z. L. and Stanford, D. A. (2009). A stochastic forest fire growth model. Environ. Ecol. Stat. 16 133–151.
  • Braun, W. J., Jones, B. L., Lee, J. S. W., Woolford, D. G. and Wotton, B. M. (2010). Forest fire risk assessment: An illustrative example from Ontario, Canada. J. Probab. Stat. Art. ID 823018, 26.
  • Breslow, N. and Powers, W. (1978). Are there two logistic regressions for retrospecitve studies? Biometrics 34 100–105.
  • Brillinger, D. R., Preisler, H. K. and Benoit, J. W. (2003). Risk assessment: A forest fire example. In Statistics and Science: A Festschrift for Terry Speed. Institute of Mathematical Statistics Lecture Notes—Monograph Series 40 177–196. IMS, Beachwood, OH.
  • Brillinger, D. R., Preisler, H. K. and Benoit, J. W. (2006). Probabilistic risk assessment for wildfires. Environmetrics 17 623–633.
  • Bruce, D. (1960). How many fires? Fire Control Notes 24 45–50.
  • Burrows, N., Ward, B. and Robinson, A. (1995). Jarrah forest fire history from stem analysis and anthropological evidence [Eucalyptus marginata; Western Australia]. Australian Forestry 58 7–16.
  • Cahoon, D. R., Stocks, B. J., Levine, J. S., Cofer, W. R. and Pierson, J. M. (1994). Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia. Journal of Geophysical Resarch 99 18627–18638.
  • Cheney, N., Gould, J. and Catchpole, W. R. (1998). Prediction of fire spread in grasslands. International Journal of Wildland Fire 8 1–13.
  • Clark, T. L., Coen, J. and Latham, D. (2004). Description of a coupled atmosphere–fire model. International Journal of Wildland Fire 13 49–63.
  • Clark, T. L., Jenkins, M. A., Coen, J. and Packham, D. R. (1997). A coupled atmosphere–fire model: Role of the convective Froude number and dynamic fingering at the fireline. International Journal of Wildland Fire 6 177–190.
  • Clements, F. E. (1910). The Life History of Lodgepole Burn Forests. US Dept. Agriculture, Washington, DC.
  • Couce, E., Knorr, W., Perona, G. and Brebbia, C. A. (2010). Statistical parameter estimation for a cellular auomata wildfire model based on satellite observations. In Second International Conference on Modelling, Monitoring and Management of Forest Fires. 47–56. WIT Press, Kos, Greece.
  • Cruz, M. G., Alexander, M. E. and Wakimoto, R. H. (2003). Assessing the probability of crown fire initiation based on fire danger indices. Forestry Chronicle 79 976–983.
  • Cruz, M. G., Alexander, M. E. and Wakimoto, R. H. (2005). Development and testing of models for predicting crown fire rate of spread in conifer forest stands. Canadian Journal of Forest Research 35 1628–1639.
  • Cruz, M. G., Alexander, M. E. and Fernandes, P. A. (2008). Development of a model system to predict wildfire behaviour in pine plantations. Australian Forestry 71 113.
  • Cruz, M. G. and Alexander, M. E. (2013). Uncertainty associated with model predictions of surface and crown fire rates of spread. Environmental Modeling and Software 47 16–28.
  • Cui, W. and Perera, A. H. (2008). What do we know about forest fire size distribution, and why is this knowledge use for forest management. International Journal of Wildland Fire 17 234–244.
  • Cui, W. and Perera, A. H. (2010). Quantifying spatio-temporal errors in forest fire spread modelling explicitly. Journal of Environmental Infomatics 16 19–26.
  • Cumming, S. (2001). A parametric model of the fire-size distribution. Canadian Journal of Forest Research 31 1297–1303.
  • Cunningham, A. and Martell, D. L. (1973). A stochastic model for the occurrence of man-caused forest fires. Canadian Journal of Forest Research 3 282–287.
  • Curry, J. R. and Fons, W. L. (1938). Rate of spread of surface fires in the ponderosa pine type of California. Journal of Agricultural Research 57 239–267.
  • Doan, G. E. and Martell, D. L. (1974). The computer based fire weather information system in Ontario. Forestry Chronicle 50 149–150.
  • Duff, T. J., Chong, D. M. and Tolhurst, K. G. (2013). Quantifying spatio-temporal differences between fire shapes: Estimating fire travel paths for the improvement of dynamic spread models. Environmental Modelling and Software 46 33–43.
  • Fall, J. G. and Lertzman, K. P. (1999). An interactive tutorial on fire frequency analysis (ver. 3.0). Bulletin of the Ecological Society of America 80 174–178.
  • Finlay, S. E., Moffat, A., Gazzard, R., Baker, D. and Murray, V. (2012). Health impacts of wildfires. PLoS Curr. 4 e4f959951cce2c.
  • Finney, M. (1995). The missing tail and other considerations for the use of fire history models. International Journal of Wildland Fire 5 197–202.
  • Finney, M. A. (1998). FARSITE, Fire Area Simulator—Model Development and Evaluation. US Dept. Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, UT.
  • Finney, M. A. (2000). Efforts at Comparing Simulated and Observed Fire Growth Patterns. Systems for Environmental Management, Missoula, MT.
  • Finney, M. A. (2002). Fire growth using minimum travel time methods. Canadian Journal of Forest Research 32 1420–1424.
  • Finney, M. A., Grenfell, I. C., McHugh, C. W., Seli, R. C., Trethewey, D., Stratton, R. D. and Brittain, S. (2011a). A method for ensemble wildland fire simlation. Environmental Modeling and Assessment 16 153–167.
  • Finney, M. A., McHugh, C. W., Grenfell, I. C., Riley, K. L. and Short, K. C. (2011b). A simulation of probabilistic wildfire risk components for the continental United States. Stoch. Environ. Res. Risk Assess. 25 973–1000.
  • Flannigan, M. D. and Haar, T. H. V. (1986). Forest fire monitoring using NOAA satellite AVHRR. Canadian Journal of Forest Research 16 975–982.
  • Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M. and Gowman, L. M. (2009). Implications of changing climate for global wildland fire. International Journal of Wildland Fire 18 483–507.
  • Fons, W. L. (1946). Analysis of fire spread in light forest fuels. Journal of Agriculture Research 72 93–121.
  • Forestry Canada Fire Danger Group (1992). Development and structure of the Canadian forest fire behavior prediction system. Forestry Canada, Ottawa, ON.
  • Frandsen, W. H. (1997). Ignition probability of organic soils. Canadian Journal of Forest Research 27 1471–1477.
  • Fujioka, F. M. (2002). A new method for the analysis of fire spread modeling errors. International Journal of Wildland Fire 11 193–203.
  • Fujioka, F. M., Gill, A. M., Viegas, D. X. and Wotton, B. M. (2008). Fire danger and fire behavior modeling systems in Australia, Europe, and North America. Developments in Environmental Science 11 471–497.
  • Garcia, C. V., Woodard, P., Titus, S., Adamowicz, W. and Lee, B. (1995). A logit model for predicting the daily occurrence of human caused forest-fires. International Journal of Wildland Fire 5 101–111.
  • Giglio, L., Randerson, J., van der Werf, G., Kasibhatla, P., Collatz, G., Morton, D. and DeFries, R. (2009). Assessing variability and long-terms trends in burned area by merging multiple satellite fire products. Biogeosciences Discussions 6 11577–11622.
  • Gisborne, H. (1927). Meteorological factors in the Quartz Creek forest fire. Monthly Weather Review 55 56–60.
  • Greenville, A. C., Dickman, C. R., Wardle, G. M. and Letnic, M. (2009). The fire history of an arid grassland: The influence of antecedent rainfall and ENSO. International Journal of Wildland Fire 18 631–639.
  • Grissino-Mayer, H. D. (1999). Modeling fire interval data from the American Southwest with the Weibull distribution. International Journal of Wildland Fire 9 37–50.
  • Haines, D. A. and Kuehnast, E. L. (1970). When the Midwest burned. Weatherwise 23 112–119.
  • Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W. and Medina-Elizade, M. (2006). Global temperature change. Proc. Natl. Acad. Sci. USA 103 14288–14293.
  • Hardy, C. C. and Hardy, C. E. (2007). Fire danger rating in the United States of America: An evolution since 1916. International Journal of Wildland Fire 16 217–231.
  • Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer, New York.
  • Heinselman, M. L. (1973). Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota. Quaternary Research 3 329–382.
  • Higuera, P. E., Gavin, D. G., Bartlein, P. J. and Hallett, D. J. (2011). Peak detection in sediment-charcoal records: Impacts of alternative data analysis methods on fire-history interpretations. International Journal of Wildland Fire 19 996–1014.
  • Holmes, T. P., Hugget, R. J. and Westerling, A. L. (2008). Statistical analysis of large wildfires. In The Economics of Forest Disturbances 59–77. Springer, New York, NY.
  • Howe, C. D. (1915). The effect of repeated forest fires upon the reproduction of commercial species in Peterborough County, Ontario. In Forest Protection in Canada: 19131914 162–211. Canada Commission on Conservation, Ottawa, ON.
  • Jiang, Y., Zhuang, Q., Flannigan, M. and Little, J. M. (2009). Characterization of wildfire regimes in Canadian boreal terrestrial ecosystems. International Journal of Wildland Fire 18 992–1002.
  • Johnson, E. A. and Gutsell, S. L. (1994). Fire frequency models, methods and interpretations. Advances in Ecological Research 25 239–287.
  • Jones, C., Dennison, P., Fujioka, F., Weise, D. and Benoit, J. (2003). Analysis of space/time characteristics of errors in an integrated weather/fire spread simulation. In Proceedings of the 5th Symposium on Fire and Forest Meteorology. American Meteorological Society, Orlando, FL.
  • Justice, C., Giglio, L., Korontzi, S., Owens, J., Morisette, J., Roy, D., Descloitres, J., Alleaume, S., Petitcolin, F. and Kaufman, Y. (2002). The MODIS fire products. Remote Sensing of Environment 83 244–262.
  • Kiil, A. and Grigel, J. E. (1969). The May 1968 Forest Conflagrations in Central Alberta: A Review of Fire Weather, Fuels and Fire Behavior. Canada Dept. Forestry, Calgary, AB.
  • Kilgore, B. M. and Taylor, D. (1979). Fire history of a sequoia-mixed conifer forest. Ecology 60 129–142.
  • Kourtz, P., Nozaki, S. and O’Regan, W. G. (1977). Forest Fires in the Computer—A Model to Predict the Perimeter Location of a Forest Fire. Fish. Environ. Can., Forest Fire Research Institute, Ottawa, ON.
  • Kourtz, P. and O’Regan, W. G. (1971). A model for a small forest fire…to simulate burned and burning areas for use in a detection model. Forest Science 17 163–169.
  • Kourtz, P. and Todd, B. (1991). Predicting the Daily Occurrence of Lightning-Caused Forest Fires. Forestry Canada, Ottawa, ON.
  • Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Dorn, J. V. and Hayhoe, K. (2009). Global pyrogeography: The current and future distribution of wildfire. PLoS ONE 4 e5102.
  • Krider, E., Noggle, R., Pifer, A. and Vance, D. (1980). Lightning direction-finding systems for forest fire detection. Bulletin of the American Meteorological Society 61 980–986.
  • Lawson, B. D. and Armitage, O. (2008). Weather Guide for the Canadian Forest Fire Danger Rating System. Nat. Resour. Can., Can. For. Serv., North. For. Cent., Edmonton, AB.
  • Lee, B., Alexander, M., Hawkes, B., Lynham, T., Stocks, B. and Englefield, P. (2002). Information systems in support of wildland fire management decisions making in Canada. Computers and Electronics in Agriculture 37 185–198.
  • Leonard, S. (2009). Predicting sustained fire spread in Tasmanian native grasslands. Environ. Manage. 44 430–440.
  • Linn, R., Reisner, J., Colman, J. J. and Winterkamp, J. (2002). Studying wildfire behavior using FIRETEC. International Journal of Wildland Fire 11 233–246.
  • Linn, R., Anderson, K., Winterkamp, J., Brooks, A., Wotton, B. M., Dupuy, J. L., Pimont, F. and Edminster, C. (2012). Incorporating field wind data into FIRETEC simulations of the International Crown Fire Modeling Experiment (ICFME): Preliminary lessons learned. Canadian Journal of Forest Research 42 879–898.
  • Magnussen, S. and Taylor, S. W. (2012a). Prediction of daily lightning- and human-caused fires in British Columbia. International Journal of Wildland Fire 21 342–356.
  • Magnussen, S. and Taylor, S. W. (2012b). Inter- and intra-annual profiles of fire regmines in the managed forests of Canada and implications for resource sharing. International Journal of Wildland Fire 21 328–341.
  • Mahfouf, J. F., Brasnett, B. and Gagnon, S. (2007). A Canadian precipitation analysis (CaPA) project: Description and preliminary results. Atmosphere–Ocean 45 1–17.
  • Malamud, B. D., Millington, J. D. A. and Perry, G. L. W. (2005). Characterizing wildfire regimes in the United States. Proc. Natl. Acad. Sci. USA 102 4694–4699.
  • Malamud, B. D., Morein, G. and Turcotte, D. L. (1998). Forest fires: An example of self-organized critical behavior. Science 281 1840–1842.
  • Marsden-Smedley, J. B., Catchpole, W. R. and Pyrke, A. (2001). Fire modelling in Tasmanian buttongrass moorlands. IV. Sustaining versus non-sustaining fires. International Journal of Wildland Fire 10 255–262.
  • Martell, D. L. (1982). A review of operational research studies in forest fire management. Canadian Journal of Forest Research 12 119–140.
  • Martell, D. L., Bevilacqua, E. and Stocks, B. J. (1989). Modelling seaonal variation in daily people-caused forest fire occurrence in Ontario. Canadian Journal of Forest Research 19 1555–1563.
  • Martell, D. L., Otukol, S. and Stocks, B. J. (1987). A logistic model for predicting daily people-caused forest fire occurrence in Ontario. Canadian Journal of Forest Research 17 394–401.
  • Martell, D. L. and Sun, H. (2008). The impact of fire suppression, vegetation, and weather on the area burned by lightning-cause forest fires in Ontario. Canadian Journal of Forest Research 38 1547–1563.
  • McBride, J. R. (1983). Analysis of tree rings and fire scars to establish fire history. Tree-Ring Bulletin 43 51–67.
  • Mell, W., Jenkins, M. A., Gould, J. and Cheney, P. (2007). A physics-based approach to modelling grassland fires. International Journal of Wildland Fire 16 1–22.
  • Meyn, A., Taylor, S. W., Flannigan, M. D., Thonicke, K. and Cramer, W. (2009). Relationship between fire, climate oscillations, and drought in British Columbia, Canada, 1920–2000. Global Change Biology 16 977–989.
  • Meyn, A., Schmidtlein, S., Taylor, S. W., Girardin, M. P., Thonicke, K. and Cramer, W. (2010). Spatial variation of trends in wildfire and summer drought in British Columbia, Canada, 1920–2000. International Journal of Wildland Fire 19 272–283.
  • Moritz, M. A., Morais, M. E., Summerell, L. A., Carlson, J. M. and Doyle, J. (2005). Wildfires, complexity, and highly optimized tolerance. Proc. Natl. Acad. Sci. USA 102 17912–17917.
  • Nichols, K., Schoenberg, F. P., Keeley, J. E., Bray, A. and Diez, D. (2011). The application of prototype point processes for the summary and description of California wildfires. J. Time Series Anal. 32 420–429.
  • Olsen, C. F. (2003). An analysis of the Honey Fire. Fire Management Today 29 28–41.
  • Palmer, T. N., Shutts, G. J., Hagedorn, R., Doblas-Reyes, F. J., Jung, T. and Leutbecher, M. (2005). Representing model uncertainty in weather and climate prediction. Annual Review of Earth and Planetary Sciences 33 163–193.
  • Parisien, M. A. and Moritz, M. A. (2009). Environmental control on the distribution of wildfire at multiple spatial scales. Ecological Monographs 79 127–153.
  • Parisien, M. A., Kafka, V., Hirsch, K., Todd, J., Lavoie, S. and Maczek, P. (2005). Mapping Wildfire Susceptibility with the BURN-P3 Simulation Model. Nat. Resour. Can., Can. For. Serv., North. For. Cent., Edmonton, AB.
  • Parisien, M.-A., Parks, S. A., Krawchuk, M. A., Flannigan, M. D., Bowman, L. M. and Moritz, M. A. (2011). Scale-dependent controls on the area burned in the boreal forest of Canada, 1980–2005. Ecol. Appl. 21 789–805.
  • Parisien, M. A., Snetsinger, S., Greenberg, J. A., Nelson, C. R., Schoennagel, T., Dobrowski, S. Z. and Moritz, M. A. (2012). Spatial variabilty in wildfire probability across the western United States. International Journal of Wildland Fire 21 313–327.
  • Pastor, E., Zarate, L., Planas, E. and Arnaldos, J. (2003). Mathematical models and calculation systems for the study of wildland behaviour. Progress in Energy and Combusion Science 29 139–153.
  • Plucinski, M. P. and Anderson, W. R. (2008). Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation. International Journal of Wildland Fire 17 628–637.
  • Plummer, F. G. (1912). Forest Fires: Their Causes, Extent and Effects, With a Summary of Recorded Destruction and Loss. US Dept. Agriculture, Forest Service, Washington, DC.
  • Podur, J., Martell, D. L. and Knight, K. (2002). Statistical quality control analysis of forest fire activity in Canada. Canadian Journal of Forest Research 32 195–205.
  • Podur, J. J., Martell, D. L. and Stanford, D. (2010). A compound Poisson model for the annual area burned by forest fires in the province of Ontario. Environmetrics 21 457–469.
  • Preisler, H. K. and Ager, A. A. (2013). Forest-Fire Models. Encyclopedia of Environmetrics.
  • Preisler, H. K. and Westerling, A. L. (2007). Statistical model for forecasting monthly large wildfire events in western United States. Journal of Applied Meteorology and Climatology 46 1020–1030.
  • Preisler, H. K., Brillinger, D., Burgan, R. E. and Benoit, J. W. (2004). Probability based models for estimation of wildfire risk. International Journal of Wildland Fire 13 133–142.
  • Preisler, H. K., Chen, S. C., Fujioka, F., Benoit, J. W. and Westerling, A. L. (2008). Wildland fire probabilities estimated from weather model-deduced monthly mean fire danger indices. International Journal of Wildland Fire 17 305–316.
  • Preisler, H. K., Westerling, A. L., Gebert, K. M., Munoz-Arriola, F. and Holmes, T. P. (2011). Spatially explicit forecasts of large wildland fire probability and suppression costs for California. International Journal of Wildland Fire 20 508–517.
  • Reed, W. J. (1994). Estimating the historic probability of stand-replacement fire using the age–class distribution of undisturbed forest. Forest Science 40 104–119.
  • Reed, W. J. (2000). Reconstructing the history of forest fire frequency: Identifying hazard rate change points using the Bayes information criterion. Canad. J. Statist. 28 353–365.
  • Reed, W. J. (2001). Statistical inference for historical fire frequency using spatial mosiac. Chapter 12. In Forest Fires: Behavior and Ecological Effects (E. Johnson and K. Miyanshi, eds.). Academic Press, San Diego, CA.
  • Reed, W. J. and Johnson, E. A. (2004). Statistical methods for estimating historical fire frequency from multiple fire-scar data. Canadian Journal of Forest Research 34 2306–2313.
  • Reed, W. J. and McKelvey, K. S. (2002). Power-law behaviour and parametric models for the size-distribution of forest fires. Ecological Modelling 150 239–254.
  • Reed, W., Larson, C., Johnson, E. and MacDonald, G. (1998). Estimation of temporal variations in historical fire frequency from time-since-fire map data. Forest Science 44 465–475.
  • Richards, G. D. (1990). An elliptical growth model of forest fire fronts and its numerical solution. Internat. J. Numer. Methods Engrg. 30 1163–1179.
  • Richards, G. (1995). A general mathematical framework for modeling two-dimensional wildland fire spread. International Journal of Wildland Fire 5 63–72.
  • Roberts, G., Wooster, M. and Lagoudakis, E. (2009). Annual and diurnal african biomass burning temporal dynamics. Biogeosciences 6 849–866.
  • Robinson, C. D. (1872). Account of the Great Peshtigo fire of 1871. In Report on Forestry to the Commisioner of Agriculture (F. B. Hough, ed.) 231–242. U.S. Government Printing Office, Washington, DC.
  • Rothermel, R. C. (1972). A Mathematical Model for Predicting Fire Spread in Wildland Fuels. Intermountain Forest & Range Experiment Station, Forest Service, US Dept. Agriculture, Washington, DC.
  • Rothermel, R. C., Anderson, H. E. and Forest, I. (1966). Fire Spread Characteristics Determined in the Laboratory. Intermountain Forest & Range Experiment Station, Forest Service, US Dept. Agriculture, Washington, DC.
  • Saito, K. (2001). Flames. Chapter 2. In Forest Fires, Behavior and Ecological Effects (K. M. E. Johnson, ed.). Academic Press, San Diego, CA.
  • Sauvagnargues-Lesage, S., Dusserre, G., Robert, F., Dray, G. and Pearson, D. (2001). Experimental validation in Mediterranean shrubs fuel of seven wildland fire rate of spread models. International Journal of Wildland Fire 10 15–22.
  • Schoenberg, F. P. (2004). Testing separability in spatial-temporal marked point processes. Biometrics 60 471–481.
  • Schoenberg, F. P., Peng, R. and Woods, J. (2003). On the distribution of wildfire sizes. Environmetrics 14 583–592.
  • Show, S. (1919). Climate and forest fires in northern California. Journal of Forestry 17 965–979.
  • Show, S. B. and Kotok, E. I. (1923). Forest fires in California 1911–1920: An analytical study. Department Circular 243, United States Department of Agriculture, Washington, DC.
  • Show, S., Abell, C., Deering, R. and Hanson, P. (1941). A planning basis for adequate fire control on the southern California national forests. Fire Control Notes 5 1–59.
  • Simard, A. J. (1991). Fire severity, changing scales, and how things hang together. International Journal of Wildland Fire 1 23–34.
  • Stocks, M., Alexander, M. and Lanoville, R. (2004). Overview of the International Crown Fire Modelling Experiment (ICFME). Canadian Journal of Forest Research 34 1543–1547.
  • Sullivan, A. L. (2009a). Wildland surface fire spread modelling, 1990–2007. 1: Physical and quasi-physical models. International Journal of Wildland Fire 18 349–368.
  • Sullivan, A. L. (2009b). Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models. International Journal of Wildland Fire 18 369–386.
  • Sullivan, A. L. (2009c). Wildland surface fire spread modelling, 1990–2007. 3: Simulation and mathematical analogue models. International Journal of Wildland Fire 18 387–403.
  • Sullivan, A. and Knight, I. (2001). Estimating the error in wind speed measurements for experimental fires. Canadian Journal of Forest Research 31 401–409.
  • Svetsov, V. V. (2002). Comment on “Extraterrestrial impacts and wildfires.” Palaeogeography, Palaeoclimatology, Palaeoecology 185 403–405.
  • Swain, A. M. (1973). A history of fire and vegetation in northeastern Minnisota as recorded in lake sediments. Quaternary Research 3 383–396.
  • Taylor, S. W. and Alexander, M. E. (2006). Science, technology, and human factors in fire danger rating: The Canadian experience. International Journal of Wildland Fire 15 121–135.
  • Todd, B. and Kourtz, P. H. (1991). Predicting the Daily Occurence of People-Caused Forest Fires. Forestry Canada, Chalk River, Ontario.
  • Toth, Z., Desmarais, J. G., Brunet, G., Zhu, Y., Verret, R., Wobus, R., Hogue, R. and Cui, B. (2005). The North American Ensemble Forecast System (NAEFS). Geophysical Research Abstracts 7 02501.
  • Turner, R. (2009). Point pattern of forest fire locations. Environ. Ecol. Stat. 16 197–223.
  • Tymstra, C., Bryce, R., Wotton, B. M., Taylor, S. W. and Armitage, O. (2010). Development and Structure of Prometheus: The Canadian Wildland Fire Growth Simulation Model. Nat. Resour. Can., Can. For. Serv., North. For. Cent., Edmonton, AB.
  • Van Wagner, C. E. (1969). A simple fire-growth model. Forestry Chronicle 45 103–104.
  • Van Wagner, C. E. (1977). Conditions for the start and spread of crown fire. Canadian Journal of Forest Research 7 23–34.
  • Van Wagner, C. E. (1978). Age-class distribution and the forest fire cycle. Canadian Journal of Forest Research 8 220–227.
  • Van Wagner, C. E. (1987). Development and Structure of the Canadian Forest Fire Weather Index System. Canadian Forest Service, Ottawa.
  • Viegas, D. X., Bovio, G., Ferreira, A., Nosenzo, A. and Sol, B. (1999). Comparative study of various mthods of fire danger evaluation in sourthern Europe. International Journal of Wildland Fire 9 235–246.
  • Vilar, L., Woolford, D. G., Martell, D. L. and Martn, M. P. (2010). A model for predicting human-caused wildfire occurrence in the region of Madrid, Spain. International Journal of Wildland Fire 19 325–337.
  • Von Storch, H. and Zwiers, F. W. (2002). Statistical Analysis in Climate Research. Cambridge Univ. Press, Cambridge.
  • Weber, R. (1991). Modelling fire spread through fuel beds. Process in Energy and Combustion Science 17 67–82.
  • Weber, R. (2001). Forest Fires: Behaviour and Ecological Effects. Academic Press, San Diego, CA.
  • Westerling, A. L., Hidalgo, H. G., Cayan, D. R. and Swetnam, T. W. (2006). Warming and earlier spring increase western US forest wildfire activity. Science 313 940–943.
  • Wiitala, M. R. (1999). Assessing the risk of cumulative burned acreage using the Poisson probability model. In Proceedings of the Symp. on Fire Economics, Planning and Policy: Bottom Lines 51–58. USDA For. Serv.
  • Wiitala, M. R. and Carlton, D. W. (1994). Assessing long-term fire movement risk in wilderness fire management. In 12th Conf. on Fire and Forest Meteorology 187–194. Jekyll Island, GA.
  • Wood, S. N. (2006). Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC, Boca Raton, FL.
  • Woolford, D. G., Braun, W. J., Dean, C. B. and Martell, D. L. (2009). Site-specific seasonal baselines for forest fire risk in Ontario. Geomatica 63 356–364.
  • Woolford, D. G., Cao, J., Dean, C. B. and Martell, D. L. (2010). Characterizing temporal changes in forest fire ignitions: Looking for climate change signals in a region of the Canadian boreal forest. Environmetrics 21 789–800.
  • Woolford, D. G., Bellhouse, D. R., Braun, W. J., Dean, C. B., Martell, D. L. and Sun, J. (2011). A spatio-temporal model for people-caused forest fire occurrence in the Romeo Malette Forest. Journal of Environmental Statistics 2 2–16.
  • Woolford, D. G., Dean, C. B., Martell, D. L., Cao, J. and Wotton, B. M. (2013). Lightning-caused forest fire risk in Northwestern Ontario, Canada is increasing and associated with anomalies in fire-weather. Unpublished manuscript.
  • Wotton, B. M. (2009). Interpreting and using outputs from the Canadian forest fire danger rating system in research applications. Environ. Ecol. Stat. 16 107–131.
  • Wotton, B. M. and Martell, D. L. (2005). A lightning fire occurrence model for Ontario. Canadian Journal of Forest Research 35 1389–1401.
  • Xu, H. and Schoenberg, F. P. (2011). Point process modeling of wildfire hazard in Los Angeles County, California. Ann. Appl. Stat. 5 684–704.
  • Zinck, R. D. and Grimm, V. (2009). Unifying wildfire models from ecology and statistical physics. Am. Nat. 174 E170–E185.