Statistical Science

Assessment of Point Process Models for Earthquake Forecasting

Andrew Bray and Frederic Paik Schoenberg

Full-text: Open access

Abstract

Models for forecasting earthquakes are currently tested prospectively in well-organized testing centers, using data collected after the models and their parameters are completely specified. The extent to which these models agree with the data is typically assessed using a variety of numerical tests, which unfortunately have low power and may be misleading for model comparison purposes. Promising alternatives exist, especially residual methods such as super-thinning and Voronoi residuals. This article reviews some of these tests and residual methods for determining the goodness of fit of earthquake forecasting models.

Article information

Source
Statist. Sci., Volume 28, Number 4 (2013), 510-520.

Dates
First available in Project Euclid: 3 December 2013

Permanent link to this document
https://projecteuclid.org/euclid.ss/1386078876

Digital Object Identifier
doi:10.1214/13-STS440

Mathematical Reviews number (MathSciNet)
MR3161585

Zentralblatt MATH identifier
1331.86016

Keywords
Earthquakes model assessment point process residual analysis spatial–temporal statistics super-thinning

Citation

Bray, Andrew; Schoenberg, Frederic Paik. Assessment of Point Process Models for Earthquake Forecasting. Statist. Sci. 28 (2013), no. 4, 510--520. doi:10.1214/13-STS440. https://projecteuclid.org/euclid.ss/1386078876


Export citation

References

  • Adelfio, G. and Schoenberg, F. P. (2009). Point process diagnostics based on weighted second-order statistics and their asymptotic properties. Ann. Inst. Statist. Math. 61 929–948.
  • Baddeley, A. J., Møller, J. and Waagepetersen, R. (2000). Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Stat. Neerl. 54 329–350.
  • Baddeley, A., Møller, J. and Pakes, A. G. (2008). Properties of residuals for spatial point processes. Ann. Inst. Statist. Math. 60 627–649.
  • Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005). Residual analysis for spatial point processes. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 617–666.
  • Bakun, W. H., Aagaard, B., Dost, B., Ellsworth, W. L., Hardebeck, J. L., Harris, R. A., Ji, C., Johnston, M. J. S., Langbein, J., Lienkaemper, J. J., Michael, A. J., Murray, J. R., Nadeau, R. M., Reasenberg, P. A., Reichle, M. S., Roeloffs, E. A., Shakal, A., Simpson, R. W. and Waldhauser, F. (2005). Implications for prediction and hazard assessment from the 2004 Parkfield earthquake. Nature 437 969–974.
  • Balderama, E., Schoenberg, F. P., Murray, E. and Rundel, P. W. (2012). Application of branching models in the study of invasive species. J. Amer. Statist. Assoc. 107 467–476.
  • Bolt, B. (2003). Earthquakes, 5th ed. Freeman, New York.
  • Bray, A., Wong, K., Barr, C. and Schoenberg, F. P. (2014). Residuals for spatial point processes based on Voronoi tessellations. Ann. Appl. Stat. To appear.
  • Brémaud, P. (1981). Point Processes and Queues: Martingale Dynamics. Springer, New York.
  • Chu, A., Schoenberg, F. P., Bird, P., Jackson, D. D. and Kagan, Y. Y. (2011). Comparison of ETAS parameter estimates across different global tectonic zones. Bull. Seismol. Soc. Amer. 101 2323–2339.
  • Clements, R. A., Schoenberg, F. P. and Schorlemmer, D. (2011). Residual analysis methods for space–time point processes with applications to earthquake forecast models in California. Ann. Appl. Stat. 5 2549–2571.
  • Clements, R. A., Schoenberg, F. P. and Veen, A. (2012). Evaluation of space-time point process models using super-thinning. Environmetrics 23 606–616.
  • Console, R., Murru, M. and Falcone, G. (2010). Probability gains of an epidemic-type aftershock sequence model in retrospective forecasting of $M\geq 5$ earthquakes in Italy. J. Seismology 14 9–26.
  • Field, E. H. (2007). Overview of the working group for the development of regional earthquake models (RELM). Seismological Research Letters 78 7–16.
  • Field, E. H., Dawson, T. E., Felzer, K. R., Frankel, A. D., Gupta, V., Jordan, T. H., Parsons, T., Petersen, M. D., Stein, R. S., Weldon, R. J. and Wills, C. J. (2009). Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2). Bull. Seismol. Soc. Amer. 99 2053–2107.
  • Gelfand, A., Diggle, P., Guttorp, P. and Fuentes, M., eds. (2010). Handbook of Spatial Statistics. CRC Press, Boca Raton, FL.
  • Geller, R. J., Jackson, D. D., Kagan, Y. Y. and Mulargia, F. (1997). Earthquakes cannot be predicted. Science 275 1616–1617.
  • Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. J. Amer. Statist. Assoc. 102 359–378.
  • Hauksson, E. and Goddard, J. G. (1981). Radon earthquake precursor studies in Iceland. J. Geophys. Res. 86 7037–7054.
  • Hawkes, A. G. (1971). Point spectra of some mutually exciting point processes. J. R. Stat. Soc. Ser. B Stat. Methodol. 33 438–443.
  • Helmstetter, A., Kagan, Y. Y. and Jackson, D. D. (2007). High-resolution time-independent grid-based forecast $M\geq 5$ earthquakes in California. Seismological Research Letters 78 78–86.
  • Helmstetter, A. and Sornette, D. (2003). Predictability in the Epidemic-Type Aftershock Sequence model of interacting triggered seismicity. J. Geophys. Res. 108 2482–2499.
  • Hough, S. (2010). Predicting the Unpredictable: The Tumultuous Science of Earthquake Prediction. Princeton Univ. Press, Princeton, NJ.
  • Jackson, D. D. (1996). Earthquake prediction evaluation standards applied to the VAN method. Geophys. Res. Lett. 23 1363–1366.
  • Jordan, T. H. (2006). Earthquake predictability, brick by brick. Seismological Research Letters 77 3–6.
  • Jordan, T. H. and Jones, L. M. (2010). Operational earthquake forecasting: Some thoughts on why and how. Seismological Research Letters 81 571–574.
  • Kagan, Y. Y. (1997). Are earthquakes predictable? Geophys. J. Int. 131 505–525.
  • Kagan, Y. Y. (2009). Testing long-term earthquake forecasts: Likelihood methods and error diagrams. Geophys. J. Int. 177 532–542.
  • Keilis-Borok, V. and Kossobokov, V. G. (1990). Premonitory activation of earthquake flow: Algorithm M8. Physics of the Earth and Planetary Interiors 6 73–83.
  • Lewis, P. A. W. and Shedler, G. S. (1979). Simulation of nonhomogeneous Poisson processes by thinning. Naval Res. Logist. Quart. 26 403–413.
  • Manga, M. and Wang, C. Y. (2007). Earthquake hydrology. In Treatise on Geophysics (G. Schubert, ed.) 4 293–320. Elsevier, Amsterdam.
  • Marzocchi, W. and Zechar, J. D. (2011). Earthquake forecasting and earthquake prediction: Different approaches for obtaining the best model. Seismological Research Letters 82 442–448.
  • Merzbach, E. and Nualart, D. (1986). A characterization of the spatial Poisson process and changing time. Ann. Probab. 14 1380–1390.
  • Meyer, P. A. (1971). Démonstration simplifiée d’un théorème de Knight. In Séminaire de Probabilités, V (Univ. Strasbourg, Année Universitaire 19691970) Lecture Notes in Math. 191 191–195. Springer, Berlin.
  • Molchan, G. M. (1991). Structure of optimal strategies in earthquake prediction. Tectonophysics 193 267–276.
  • Molchan, G. (2010). Space-time earthquake prediction: The error diagrams. Pure and Applied Geophysics 167 907–917.
  • Nair, M. G. (1990). Random space change for multiparameter point processes. Ann. Probab. 18 1222–1231.
  • Ogata, Y. (1978). The asymptotic behaviour of maximum likelihood estimators for stationary point processes. Ann. Inst. Statist. Math. 30 243–261.
  • Ogata, Y. (1981). On Lewis’ simulation method for point processes. IEEE Trans. Inform. Theory IT-27 23–31.
  • Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis for point processes. J. Amer. Statist. Assoc. 83 9–27.
  • Ogata, Y. (1998). Space–time point process models for earthquake occurrences. Ann. Inst. Statist. Math. 50 379–402.
  • Ogata, Y., Jones, L. M. and Toda, S. (2003). When and where the aftershock activity was depressed: Contrasting decay patterns of the proximate large earthquakes in southern California. Journal of Geophysical Research 108 2318.
  • Okabe, A., Boots, B., Sugihara, K. and Chiu, S. N. (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd ed. Wiley, Chichester.
  • Rhoades, D. A., Schorlemmer, D., Gerstenberger, M. C., Christophersen, A., Zechar, J. D. and Imoto, M. (2011). Efficient testing of earthquake forecasting models. Acta Geophysica 59 728–747.
  • Ripley, B. D. (1976). The second-order analysis of stationary point processes. J. Appl. Probab. 13 255–266.
  • Schoenberg, F. (1999). Transforming spatial point processes into Poisson processes. Stochastic Process. Appl. 81 155–164.
  • Schoenberg, F. P. (2003). Multidimensional residual analysis of point process models for earthquake occurrences. J. Amer. Statist. Assoc. 98 789–795.
  • Schoenberg, F. P. (2013). Facilitated estimation of ETAS. Bulletin of the Seismological Society of America 103 1–7.
  • Schorlemmer, D., Gerstenberger, M. C., Wiemer, S., Jackson, D. D. and Rhoades, D. A. (2007). Earthquake likelihood model testing. Seismological Research Letters 78 17–27.
  • Shen, Z. K., Jackson, D. D. and Kagan, Y. Y. (2007). Implications of geodetic strain rate for future earthquakes, with a five-year forecast of M5 earthquakes in southern California. Seismological Research Letters 78 116–120.
  • Sornette, D. (2005). Apparent clustering and apparent background earthquakes biased by undetected seismicity. J. Geophys. Res. 110 B09303.
  • Swets, J. A. (1973). The relative operating characteristic in psychology. Science 182 990–1000.
  • Tiampo, K. R. and Shcherbakov, R. (2012). Seismicity-based earthquake forecasting techniques: Ten years of progress. Tectonophysics 522 89–121.
  • Veen, A. and Schoenberg, F. P. (2006). Assessing spatial point process models using weighted $K$-functions: Analysis of California earthquakes. In Case Studies in Spatial Point Process Modeling (A. Baddeley, P. Gregori, J. Mateu, R. Stoica and D. Stoyan, eds.). Lecture Notes in Statist. 185 293–306. Springer, New York.
  • Vere-Jones, D. and Schoenberg, F. P. (2004). Rescaling marked point processes. Aust. N. Z. J. Stat. 46 133–143.
  • Vere-Jones, D. and Zhuang, J. (2008). On the distribution of the largest event in the critical ETAS model. Phys. Rev. E (3) 78 047102.
  • Wang, Q., Jackson, D. D. and Kagan, Y. Y. (2011). California earthquake forecasts based on smoothed seismicity: Model choices. Bull. Seismol. Soc. Amer. 101 1422–1430.
  • Werner, M. J., Helmstetter, A., Jackson, D. D. and Kagan, Y. Y. (2011). High-Resolution Long-Term and Short-Term Earthquake Forecasts for California. Bull. Seismol. Soc. Amer. 101 1630–1648.
  • Zaliapin, I. and Molchan, G. (2004). Tossing the earth: How to reliably test earthquake prediction methods. Eos. Trans. AGU 85 47. S23A–0302.
  • Zechar, J. D., Gerstenberger, M. C. and Rhoades, D. A. (2010). Likelihood-based tests for evaluating space–rate-magnitude earthquake forecasts. Bull. Seismol. Soc. Amer. 100 1184–1195.
  • Zechar, J. D. and Jordan, T. H. (2008). Testing alarm-based earthquake predictions. Geophys. J. Int. 172 715–724.
  • Zechar, J. D., Schorlemmer, D., Werner, M. J., Gerstenberger, M. C., Rhoades, D. A. and Jordan, T. H. (2013). Regional earthquake likelihood models I: First-order results. Unpublished manuscript.
  • Zhuang, J. (2011). Next-day earthquake forecasts for the Japan region generated by the ETAS model. Earth Planets Space 63 207–216.