Statistical Science

Quantum Computation and Quantum Information

Yazhen Wang

Full-text: Open access

Abstract

Quantum computation and quantum information are of great current interest in computer science, mathematics, physical sciences and engineering. They will likely lead to a new wave of technological innovations in communication, computation and cryptography. As the theory of quantum physics is fundamentally stochastic, randomness and uncertainty are deeply rooted in quantum computation, quantum simulation and quantum information. Consequently quantum algorithms are random in nature, and quantum simulation utilizes Monte Carlo techniques extensively. Thus statistics can play an important role in quantum computation and quantum simulation, which in turn offer great potential to revolutionize computational statistics. While only pseudo-random numbers can be generated by classical computers, quantum computers are able to produce genuine random numbers; quantum computers can exponentially or quadratically speed up median evaluation, Monte Carlo integration and Markov chain simulation. This paper gives a brief review on quantum computation, quantum simulation and quantum information. We introduce the basic concepts of quantum computation and quantum simulation and present quantum algorithms that are known to be much faster than the available classic algorithms. We provide a statistical framework for the analysis of quantum algorithms and quantum simulation.

Article information

Source
Statist. Sci., Volume 27, Number 3 (2012), 373-394.

Dates
First available in Project Euclid: 5 September 2012

Permanent link to this document
https://projecteuclid.org/euclid.ss/1346849945

Digital Object Identifier
doi:10.1214/11-STS378

Mathematical Reviews number (MathSciNet)
MR3012432

Zentralblatt MATH identifier
1331.81080

Keywords
Quantum algorithm quantum bit (qubit) quantum Fourier transform quantum information quantum mechanics quantum Monte Carlo quantum probability quantum simulation quantum statistics

Citation

Wang, Yazhen. Quantum Computation and Quantum Information. Statist. Sci. 27 (2012), no. 3, 373--394. doi:10.1214/11-STS378. https://projecteuclid.org/euclid.ss/1346849945


Export citation

References

  • Abrams, D. S. and Lloyd, S. (1997). Simulation of many-body Fermi systems on a quantum computer. Phys. Rev. Lett. 79 2586–2589.
  • Aharonov, D. and Ta-Shma, A. (2003). Adiabatic quantum state generation and statistical zero knowledge. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing 20–29. ACM, New York (electronic).
  • Artiles, L. M., Gill, R. D. and Guţă, M. I. (2005). An invitation to quantum tomography. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 109–134.
  • Aspect, A., Grangier, P. and Roger, G. (1981). Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47 460–463.
  • Aspect, A., Grangier, P. and Roger, G. (1982a). Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: A new violation of Bell’s inequalities. Phys. Rev. Lett. 49 91–94.
  • Aspect, A., Grangier, P. and Roger, G. (1982b). Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49 1804–1807.
  • Aspuru-Guzik, A. D., Dutoi, P. J. L. and Head-Gordon, M. (2005). Simulated quantum computation of molecular energies. Science 309 1704.
  • Barndorff-Nielsen, O. E., Gill, R. D. and Jupp, P. E. (2003). On quantum statistical inference. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 775–816.
  • Barz, S., Kashefi, E., Broadbent, A., Fitzsimons, J.F., Zeilinger, A. and Walther, P. (2012). Demonstration of blind quantum computing. Science 335 303–308.
  • Bell, J. (1964). On the Einstein Podolsky Rosen paradox. Physics 1 195–200.
  • Bennett, C. H., Cirac, J. I., Leifer, M. S., Leung, D. W., Linden, N., Popescu, S. and Vidal, G. (2002). Optimal simulation of two-qubit Hamiltonians using general local operations. Phys. Rev. A (3) 66 012305.
  • Berry, D. W., Ahokas, G., Cleve, R. and Sanders, B. C. (2007). Efficient quantum algorithms for simulating sparse Hamiltonians. Comm. Math. Phys. 270 359–371.
  • Boghosian, B. M. and Taylor, W. IV (1998). Simulating quantum mechanics on a quantum computer. Phys. D 120 30–42.
  • Bohm, D. (1951). Quantum Theory. Prentice-Hall, Englewood Cliffs, NJ.
  • Butucea, C., Guţă, M. and Artiles, L. (2007). Minimax and adaptive estimation of the Wigner function in quantum homodyne tomography with noisy data. Ann. Statist. 35 465–494.
  • Calderbank, A. R. and Shor, P. W. (1996). Good quantum error-correcting codes exist. Phys. Rev. A 54 1098–1105.
  • Childs, A. M. (2010). On the relationship between continuous- and discrete-time quantum walk. Comm. Math. Phys. 294 581–603.
  • Childs, A. M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S. and Spielman, D. A. (2003). Exponential algorithmic speedup by quantum walk. In Proc. 35th ACM Symposium on Theory of Computing 59–68. ACM Press, New York.
  • Clarke, J. and Wilhelm, F. K. (2008). Superconducting quantum bits. Nature 453 1031–1042.
  • Clauser, J. F., Horne, M. A., Shimony, A. and Holt, R. A. (1969). Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23 880–884.
  • Cory, D. G., Mass, W., Price, M., Knill, E., Laflamme, R., Zurek, W. H., Havel, T. F. and Somaroo, S. S. (1998). Experimental quantum error correction. Phys. Rev. Lett. 81 2152–2155.
  • Crandall, R. and Pomerance, C. (2001). Prime Numbers: A Computational Perspective. Springer, New York.
  • Deutsch, D. (1985). Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. Ser. A 400 97–117.
  • DiCarlo, L., Chow, J. M., Gambetta, J. M., Bishop, L. S., Johnson, B. R., Schuster, D. I., Majer, J., Blais, A., Frunzio, L., Girvin, S. M. and Schoelkopf, R. J. (2009). Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460 240–244.
  • DiVincenzo, D. P. (1995). Quantum computation. Science 270 255–261.
  • Einstein, A., Podolsky, B. and Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47 777–780.
  • Feynman, R. P. (1981/82). Simulating physics with computers. Internat. J. Theoret. Phys. 21 467–488.
  • Freedman, M. H., Kitaev, A. and Wang, Z. (2002). Simulation of topological field theories by quantum computers. Comm. Math. Phys. 227 587–603.
  • Griffiths, D. J. (2004). Introduction to Quantum Mechanics, 2nd ed. Benjamin Cummings, San Francisco, CA.
  • Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996) 212–219. ACM, New York.
  • Grover, L. K. (1997). Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79 325–328.
  • Hayashi, M. (2006). Quantum Information: An Introduction. Springer, Berlin. Translated from the 2003 Japanese original.
  • Heinrich, S. (2003). From Monte Carlo to quantum computation. Math. Comput. Simulation 62 219–230.
  • Holevo, A. S. (1982). Probabilistic and Statistical Aspects of Quantum Theory. North-Holland Series in Statistics and Probability 1. North-Holland, Amsterdam. Translated from the Russian by the author.
  • Holevo, A. S. (1998). The capacity of the quantum channel with general signal states. IEEE Trans. Inform. Theory 44 269–273.
  • Huber, P. J. and Ronchetti, E. M. (2009). Robust Statistics, 2nd ed. Wiley, Hoboken, NJ.
  • Jané, E., Vidal, G., Dür, W., Zoller, P. and Cirac, J. I. (2003). Simulation of quantum dynamics with quantum optical systems. Quantum Inf. Comput. 3 15–37.
  • Johnson, M. W., Amin, M. H. S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley, A. J., Johansson, J., Bunyk, P., Chapple, E. M., Enderud, C., Hilton, J. P., Karimi, K., Ladizinsky, E., Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M. C., Tolkacheva, E., Truncik, C. J. S., Uchaikin, S., Wang, J., Wilson, B., Rose, G. et al. (2011). Quantum annealing with manufactured spins. Nature 473 194–198.
  • Kato, T. (1978). Trotter’s product formula for an arbitrary pair of self-adjoint contraction semigroups. In Topics in Functional Analysis (Essays Dedicated to M. G. KreĭN on the Occasion of His 70th Birthday). Adv. in Math. Suppl. Stud. 3 185–195. Academic Press, New York.
  • Kiefer, C. (2004). On the interpretation of quantum theory—from Copenhagen to the present day. In Time, Quantum and Information 291–299. Springer, Berlin.
  • Lee, N., Benichi, H., Takeno, Y., Takeda, S., Webb, J., Huntington, E. and Furusawa, A. (2011). Teleportation of nonclassical wave packets of light. Science 332 330–333.
  • Lloyd, S. (1996). Universal quantum simulators. Science 273 1073–1078.
  • Magniez, F., Nayak, A., Roland, J. and Santha, M. (2011). Search via quantum walk. SIAM J. Comput. 40 142–164.
  • Mariantoni, M., Wang, H., Yamamoto, T., Neeley, M., Bialczak1, R. C., Chen, Y., Lenander, M., Lucero, E., O’Connell, A. D., Sank, D., Weides, M., Wenner, J., Yin, Y., Zhao, J., Korotkov, A. N., Cleland, A. N. and Martinis, J. M. (2011). Implementing the quantum von Neumann architecture with superconducting circuits. Science 7 1208517.
  • Menezes, A., van Oorschot, P. C. and Vanstone, S. A. (1996). Handbook of Applied Cryptography. CRC Press, New York.
  • Nayak, A. and Wu, F. (1999). The quantum query complexity of approximating the median and related statistics. In Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999) 384–393. ACM, New York (electronic).
  • Neumann, P., Mizuochi, N., Rempp, F., Hemmer, P., Watanabe, H., Yamasaki, S., Jacques, V., Gaebel, T., Jelezko, F. and Wrachtrup, J. (2008). Multipartite entanglement among single spins in diamond. Science 320 1326–1329.
  • Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quantum Information. Cambridge Univ. Press, Cambridge.
  • Nightingale, M. P. and Umrigar, C. J., eds. (1999). Quantum Monte Carlo Methods in Physics and Chemistry. NATO Science Series C: Mathematical and Physical Sciences 525. Kluwer Academic, Dordrecht.
  • Nussbaum, M. and Szkoła, A. (2009). The Chernoff lower bound for symmetric quantum hypothesis testing. Ann. Statist. 37 1040–1057.
  • Parthasarathy, K. R. (1992). An Introduction to Quantum Stochastic Calculus. Monographs in Mathematics 85. Birkhäuser, Basel.
  • Richter, P. C. (2007). Quantum speedup of classical mixing processes. Phys. Rev. A 76 042306.
  • Rivest, R. L., Shamir, A. and Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Comm. ACM 21 120–126.
  • Rousseau, V. G. (2008). Stochastic Green function algorithm. Phys. Rev. E (3) 77 056705.
  • Sakurai, J. J. and Napolitano, J. (2010). Modern Quantum Mechanics, 2nd ed. Addison-Wesley, Reading, MA.
  • Sayrin, C., Dotsenko, I., Zhou, X., Peaudecerf, B., Rybarczyk, T., Gleyzes, S., Rouchon, P., Mirrahimi, M., Amini, H., Brune, M., Raimond, J. M. and Haroche, S. (2011). Real-time quantum feedback prepares and stabilizes photon number states. Nature 477 10376.
  • Schumacher, B. (1995). Quantum coding. Phys. Rev. A (3) 51 2738–2747.
  • Schumacher, B. and Westmoreland, M. D. (1997). Sending classical information via noisy quantum channels. Phys. Rev. A 56 131138.
  • Shankar, R. (1994). Principles of Quantum Mechanics, 2nd ed. Plenum Press, New York.
  • Shenvi, N., Kempe, J. and Whaley, K. B. (2003). Quantum random-walk search algorithm. Phys. Rev. A 67 052307.
  • Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. In 35th Annual Symposium on Foundations of Computer Science (Santa Fe, NM, 1994) 124–134. IEEE Comput. Soc. Press, Los Alamitos, CA.
  • Shor, P. W. (1995). Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52 2493–2496.
  • Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26 1484–1509.
  • Steane, A. M. (1996a). Error correcting codes in quantum theory. Phys. Rev. Lett. 77 793–797.
  • Steane, A. (1996b). Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A 452 2551–2577.
  • Szegedy, M. (2004). Quantum speed-up of Markov chain based algorithms. In Proc. 45th IEEE Symposium on Foundations of Computer Science 32–41. IEEE Computer Society Press, Los Alamitos, CA.
  • Trotter, H. F. (1959). On the product of semi-groups of operators. Proc. Amer. Math. Soc. 10 545–551.
  • Tsirelson, B. S. (1980). Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4 93–100.
  • Tulsi, A. (2008). Faster quantum-walk algorithm for the two-dimensional spatial search. Phys. Rev. A 78 012310.
  • Vidakovic, B. (1999). Statistical Modeling by Wavelets. Wiley, New York.
  • von Neumann, J. (1955). Mathematical Foundations of Quantum Mechanics. Princeton Univ. Press, Princeton, NJ. Translated by Robert T. Beyer.
  • Wang, Y. Z. (1994). Quantum Gaussian processes. Acta Math. Appl. Sin. (Engl. Ser.) 10 315–327.
  • Wang, Y. (2011). Quantum Monte Carlo simulation. Ann. Appl. Stat. 5 669–683.
  • Wocjan, P. and Abeyesinghe, A. (2008). Speed-up via quantum sampling. arXiv:0804.4259v3[quant-ph].
  • Wootters, W. K. and Zurek, W. H. (1982). A single quantum cannot be cloned. Nature 299 802–803.
  • Yu, A. B. (2001). Campbell-Hausdorff formula. In Encyclopaedia of Mathematics (M. Hazewinkel, ed.). Kluwer Academic, Dordrecht.
  • Zalka, C. (1998). Simulating a quantum systems on a quantum computer. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 454 313–322.