Statistical Science

A Conversation with Eugenio Regazzini

Antonio Lijoi and Igor Prünster

Full-text: Open access

Abstract

Eugenio Regazzini was born on August 12, 1946 in Cremona (Italy), and took his degree in 1969 at the University “L. Bocconi” of Milano. He has held positions at the universities of Torino, Bologna and Milano, and at the University “L. Bocconi” as assistant professor and lecturer from 1974 to 1980, and then professor since 1980. He is currently professor in probability and mathematical statistics at the University of Pavia. In the periods 1989–2001 and 2006–2009 he was head of the Institute for Applications of Mathematics and Computer Science of the Italian National Research Council (C.N.R.) in Milano and head of the Department of Mathematics at the University of Pavia, respectively. For twelve years between 1989 and 2006, he served as a member of the Scientific Board of the Italian Mathematical Union (U.M.I.). In 2007, he was elected Fellow of the IMS and, in 2001, Fellow of the “Istituto Lombardo—Accademia di Scienze e Lettere.” His research activity in probability and statistics has covered a wide spectrum of topics, including finitely additive probabilities, foundations of the Bayesian paradigm, exchangeability and partial exchangeability, distribution of functionals of random probability measures, stochastic integration, history of probability and statistics. Overall, he has been one of the most authoritative developers of de Finetti’s legacy. In the last five years, he has extended his scientific interests to probabilistic methods in mathematical physics; in particular, he has studied the asymptotic behavior of the solutions of equations, which are of interest for the kinetic theory of gases. The present interview was taken in occasion of his 65th birthday.

Article information

Source
Statist. Sci. Volume 26, Number 4 (2011), 647-672.

Dates
First available in Project Euclid: 28 February 2012

Permanent link to this document
https://projecteuclid.org/euclid.ss/1330437943

Digital Object Identifier
doi:10.1214/11-STS362

Mathematical Reviews number (MathSciNet)
MR2951395

Zentralblatt MATH identifier
1331.60005

Keywords
Bayesian inference Dirichlet process exchangeability de Finetti finitely additive probabilities History of Statistics and Probability in Italy subjective probability

Citation

Lijoi, Antonio; Prünster, Igor. A Conversation with Eugenio Regazzini. Statist. Sci. 26 (2011), no. 4, 647--672. doi:10.1214/11-STS362. https://projecteuclid.org/euclid.ss/1330437943


Export citation

References

  • Allen, R. G. D. (1956). Mathematical Economics. MacMillan, London.
  • Blackwell, D. and Dubins, L. (1962). Merging of opinions with increasing information. Ann. Math. Statist. 33 882–886.
  • Castelnuovo, G. (1919). Calcolo delle Probabilità, 1st ed. Soc. Ed. Dante Alighieri, Milano.
  • Cifarelli, D. M. (1975). Contributi intorno ad un test per l’omogeneità tra due campioni. Giorn. Econom. Ann. Econom. (N.S.) 34 233–249.
  • Cifarelli, D. M. and Regazzini, E. (1974). Ancora sull’indice di cograduazione del Gini. Technical Report Serie III, No. 5, Istituto di Matematica Finanziaria dell’Universita, Torino.
  • Cifarelli, D. M. and Regazzini, E. (1978). Problemi statistici non parametrici in condizioni di scambiabibilità parziale: Impiego di medie associative. Quaderni Istituto di Matematica Finanziaria Dell’Università di Torino, Serie III, N. 12 1–36. English translation available at http://www.unibocconi.it/wps/allegatiCTP/CR-Scamb-parz[1].20080528.135739.pdf.
  • Cifarelli, D. M. and Regazzini, E. (1979). A general approach to Bayesian analysis of nonparametric problems. The associative mean values within the framework of the Dirichlet process. II. Riv. Mat. Sci. Econom. Social. 2 95–111.
  • Cifarelli, D. M. and Regazzini, E. (1990). Distribution functions of means of a Dirichlet process. Ann. Statist. 18 429–442. [Correction in Ann. Statist. (1994) 22 1633–1634].
  • Dall’Aglio, G. (1956). Sugli estremi dei momenti delle funzioni di ripartizione doppia. Ann. Scuola Norm. Sup. Pisa (3) 10 35–74.
  • Dawid, A. P. (1982). The well-calibrated Bayesian. J. Amer. Statist. Assoc. 77 605–613.
  • de Finetti, B. (1926). Considerazioni matematiche sull’ereditarietà mendeliana. Metron 6 3–41.
  • de Finetti, B. (1929). Sulle funzioni a incremento aleatorio. Atti Reale Accademia Nazionale dei Lincei, Serie VI, Rend. 10 163–168.
  • de Finetti, B. (1930a). Funzioni caratteristiche di legge istantanea. Atti Reale Accademia Nazionale dei Lincei, Serie VI, Rend. 12 278–282.
  • de Finetti, B. (1930b). Funzione caratteristica di un fenomeno aleatorio. Atti Reale Accademia Nazionale dei Lincei, Mem. 4 86–133.
  • de Finetti, B. (1931). Sul significato soggettivo della probabilità. Fund. Math. 17 298–329. [English translation in de Finetti (1992) 291–322.]
  • de Finetti, B. (1933). Sull’approsimazione empirica di una legge di probabilità. Giornale dell’Istituto Italiano degli Attuari 4 415–420.
  • de Finetti, B. (1935). Il problema della perequazione. In Atti della Società Italiana, per Il Progresso delle Scienze 2 227–228.
  • de Finetti, B. (1937a). La prévision: Ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincaré 7 1–68.
  • de Finetti, B. (1937b). A proposito di “correlazione.” Supplemento Statistico Ai Nuovi Problemi di Politica, Storia ed Economia 3 41–57. English translation available at http://www.brunodefinetti.it/Opere/AboutCorrelations.pdf.
  • de Finetti, B. (1939). La teoria del rischio e il problema della “rovina dei giocatori.” Giornale dell’Istituto Italiano degli Attuari 10 41–51.
  • de Finetti, B. (1940). Il problema dei “Pieni.” Giornale dell’Istituto Italiano degli Attuari 11 1–88.
  • de Finetti, B. (1959). La probabilità e la statistica nei rapporti con l’induzione secondo i diversi punti di vista. In Centro Internazionale Matematico Estivo (CIME) Induzione e Statistica 1–115. Cremonese, Roma. [English translation in de Finetti (1972) 147–227.]
  • de Finetti, B. (1970). Teoria delle Probabilità. Sintesi Introduttiva Con Appendice Critica. Vol. 1, 2. Einaudi, Torino. [English translation: De Finetti, B. (1974 and 1975). Theory of Probability: A Critical Introductory Treatment. Vol. 1, 2. Wiley, London.]
  • de Finetti, B. (1972). Probability, Induction and Statistics. The Art of Guessing. Wiley, London.
  • de Finetti, B. (1992). Induction and Probability. A supplement to the journal Statistica 52 (P. Monari and D. Cocchi, eds.). CLUEB, Bologna.
  • de Finetti, B. (2006). Opere Scelte, Voll. I e II. Unione Matematica Italiana.
  • de Finetti, B. and Savage, L. J. (1962). Sul modo di scegliere le probabilità iniziali. In Biblioteca del Metron, Serie C, Note e Commenti, 82–15. Istituto di Statistica Dell’Università, Roma. [English summary in de Finetti (1972) 143–146.]
  • DeGroot, M. H. (1970). Optimal Statistical Decisions. McGraw-Hill, New York.
  • Diaconis, P. and Kemperman, J. (1996). Some new tools for Dirichlet priors. In Bayesian Statistics 5 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.) 97–106. Oxford Univ. Press, New York.
  • Diaconis, P. and Ylvisaker, D. (1985). Quantifying prior opinion. In Bayesian Statistics 2 (A. K. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.) 133–156. North-Holland, Amsterdam.
  • Ferguson, T. S. (1967). Mathematical Statistics: A Decision Theoretic Approach. Probability and Mathematical Statistics, Vol. 1. Academic Press, New York.
  • Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209–230.
  • Gabetta, E. and Regazzini, E. (2006). Some new results for McKean’s graphs with applications to Kac’s equation. J. Stat. Phys. 125 947–974.
  • Gini, C. (1939). I pericoli della Statistica. Supplemento Statistico ai Nuovi problemi di Politica, Storia ed Economia 5 1–44.
  • Kac, M. (1949). On distributions of certain Wiener functionals. Trans. Amer. Math. Soc. 65 1–13.
  • Khintchine, A. Y. (1937). A new derivation of a formula by P. Lévy. Bulletin of the Moscow State University 1 1–5. (In Russian.) [English translation in the Appendix of Mainardi, F. and Rogosin, S. (2006). An origin of infinitely divisible distribution: From de Finetti’s problem to Lévy–Khintchine formula. Math. Meth. Econ. Fin. 1 37–56.]
  • Kolmogorov, A. N. (1932). Sulla forma generale di un processo stocastico omogeneo. Un problema di Bruno de Finetti. Atti Reale Accademia Nazionale dei Lincei, Ser. VI, Rend 15 805–808.
  • Lindley, D. V. (1965). Introduction to Probability and Statistics from a Bayesian Viewpoint. Part I: Probability. Cambridge Univ. Press, New York.
  • Lindley, D. V. and Smith, A. F. M. (1972). Bayes estimates for the linear model. J. Roy. Statist. Soc. Ser. B 34 1–41.
  • Lo, A. Y. (1991). A characterization of the Dirichlet process. Statist. Probab. Lett. 12 185–187.
  • McKean, H. P. Jr. (1966). Speed of approach to equilibrium for Kac’s caricature of a Maxwellian gas. Arch. Rational Mech. Anal. 21 343–367.
  • McKean, H. P. Jr. (1967). An exponential formula for solving Boltmann’s equation for a Maxwellian gas. J. Combinatorial Theory 2 358–382.
  • Pizzetti, P. (1963). I Fondamenti Matematici per la Critica dei Risultati Sperimentali (reprint of 1892 edition). Cappelli, Bologna.
  • Raiffa, H. and Schlaifer, R. (1968). Applied Statistical Decision Theory. MIT Press, Cambridge, MA.
  • Regazzini, E. and Sazonov, V. V. (2000). Approximation of distributions of random probabilities by mixtures of Dirichlet distributions with applications to nonparametric Bayesian statistical inferences. Theory Probab. Appl. 45 93–110.
  • Regazzini, E. (1978). Intorno ad alcune questioni relative alla definizione del premio secondo la teoria della credibilità. Giornale dell’Istituto Italiano degli Attuari 41 77–89.
  • Regazzini, E. (1985). Finitely additive conditional probabilities. Rend. Sem. Mat. Fis. Milano 55 69–89.
  • Regazzini, E. (1987). de Finetti’s coherence and statistical inference. Ann. Statist. 15 845–864.
  • Regazzini, E. (2005). Probability and statistics in Italy during the First World War I. Cantelli and the laws of large numbers. J. Électron. Hist. Probab. Stat. 1 1–12.
  • Romanovsky, V. (1931). Sulle probabilità “a posteriori.” Giornale dell’Istituto Italiano degli Attuari 4 493–511.
  • Savage, L. J. (1954). The Foundations of Statistics. Wiley, New York.