Statistical Science
- Statist. Sci.
- Volume 26, Number 3 (2011), 403-422.
On Instrumental Variables Estimation of Causal Odds Ratios
Stijn Vansteelandt, Jack Bowden, Manoochehr Babanezhad, and Els Goetghebeur
Full-text: Open access
Abstract
Inference for causal effects can benefit from the availability of an instrumental variable (IV) which, by definition, is associated with the given exposure, but not with the outcome of interest other than through a causal exposure effect. Estimation methods for instrumental variables are now well established for continuous outcomes, but much less so for dichotomous outcomes. In this article we review IV estimation of so-called conditional causal odds ratios which express the effect of an arbitrary exposure on a dichotomous outcome conditional on the exposure level, instrumental variable and measured covariates. In addition, we propose IV estimators of so-called marginal causal odds ratios which express the effect of an arbitrary exposure on a dichotomous outcome at the population level, and are therefore of greater public health relevance. We explore interconnections between the different estimators and support the results with extensive simulation studies and three applications.
Article information
Source
Statist. Sci., Volume 26, Number 3 (2011), 403-422.
Dates
First available in Project Euclid: 31 October 2011
Permanent link to this document
https://projecteuclid.org/euclid.ss/1320066928
Digital Object Identifier
doi:10.1214/11-STS360
Mathematical Reviews number (MathSciNet)
MR2917963
Zentralblatt MATH identifier
1246.62224
Keywords
Causal effect causal odds ratio instrumental variable marginal effect Mendelian randomization logistic structural mean model
Citation
Vansteelandt, Stijn; Bowden, Jack; Babanezhad, Manoochehr; Goetghebeur, Els. On Instrumental Variables Estimation of Causal Odds Ratios. Statist. Sci. 26 (2011), no. 3, 403--422. doi:10.1214/11-STS360. https://projecteuclid.org/euclid.ss/1320066928
References
- Abadie, A. (2003). Semiparametric instrumental variable estimation of treatment response models. J. Econometrics 113 231–263.Mathematical Reviews (MathSciNet): MR1960380
Zentralblatt MATH: 1038.62113
Digital Object Identifier: doi:10.1016/S0304-4076(02)00201-4 - Amemiya, T. (1974). The non-linear two-stage least-squares estimator. J. Econometrics 2 105–110.
- Amemiya, T. (1978). The estimation of a simultaneous equation generalized probit model. Econometrica 46 1193–1205.
- Angrist, J. (1990). Lifetime earnings and the Vietnam era draft lottery: Evidence from social security administrative records. American Economic Review 80 313–335.
- Angrist, J., Imbens, G. and Rubin, D. (1996). Identification of causal effects using instrumental variables. J. Amer. Statist. Assoc. 91 444–472.
- Blundell, R. and Powell, J. L. (2003). Endogeneity in nonparametric and semiparametric regression models. In Advances in Economics and Econometrics: Theory and Applications: Eighth World Congress: Volume II. Econometric Society Monographs 36 (M. Dewatripont, L. P. Hansen and S. J. Turnovsky, eds.) 312–357. Cambridge Univ. Press, Cambridge, UK.
- Blundell, R. W. and Powell, J. L. (2004). Endogeneity in semiparametric binary response models. Rev. Econom. Stud. 71 655–679.Mathematical Reviews (MathSciNet): MR2062893
Zentralblatt MATH: 1103.91400
Digital Object Identifier: doi:10.1111/j.1467-937X.2004.00299.x - Bowden, J., Thompson, J. R. and Burton, P. (2006). Using pseudo-data to correct for publication bias in meta-analysis. Stat. Med. 25 3798–3813.
- Bowden, J. and Vansteelandt, S. (2011). Mendelian randomisation analysis of case–control data using structural mean models. Stat. Med. 30 678–694.
- Bowden, J., Fischer, K., White, I. and Thompson, S. (2010). Estimating causal contrasts in RCTs using potential outcomes: A comparison of principal stratification and structural mean models. Technical report, MRC Biostatistics Unit, Cambridge.
- Brookhart, M. A. and Schneeweiss, S. (2007). Preference-based instrumental variable methods for the estimation of treatment effects: Assessing validity and interpreting results. Int. J. Biostat. 3 Article 14.
- Brookhart, M. A., Wang, P. S., Solomon, D. H. and Schneeweiss, S. (2006). Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable. Epidemiology 17 268–275.
- Clarke, P. and Windmeijer, F. (2009). Identification of causal effects on binary outcomes using structural mean models. Biostatistics 11 756–770.
- Didelez, V., Meng, S. and Sheehan, N. A. (2010). Assumptions of IV methods for observational epidemiology. Statist. Sci. 25 22–40.Mathematical Reviews (MathSciNet): MR2741813
Digital Object Identifier: doi:10.1214/09-STS316
Project Euclid: euclid.ss/1280841731 - Didelez, V. and Sheehan, N. (2007). Mendelian randomization as an instrumental variable approach to causal inference. Stat. Methods Med. Res. 16 309–330.Mathematical Reviews (MathSciNet): MR2395652
Zentralblatt MATH: 1122.62343
Digital Object Identifier: doi:10.1177/0962280206077743 - Foster, E. M. (1997). Instrumental variables for logistic regression: An illustration. Social Science Research 26 487–504.
- Frangakis, C. E. and Rubin, D. B. (2002). Principal stratification in causal inference. Biometrics 58 21–29.Mathematical Reviews (MathSciNet): MR1891039
Digital Object Identifier: doi:10.1111/j.0006-341X.2002.00021.x - Greenland, S. (1987). Interpretation and choice of effect measures in epidemiologic analyses. Am. J. Epidemiol. 125 761–768.
- Greenland, S. (2005). Multiple-bias modelling for analysis of observational data. J. Roy. Statist. Soc. Ser. A 168 267–306.Mathematical Reviews (MathSciNet): MR2119402
Zentralblatt MATH: 1099.62129
Digital Object Identifier: doi:10.1111/j.1467-985X.2004.00349.x - Greenland, S., Robins, J. M. and Pearl, J. (1999). Confounding and collapsibility in causal inference. Statist. Sci. 14 29–46.
- Henneman, T. A., van der Laan, M. J. and Hubbard, A. E. (2002). Estimating causal parameters in marginal structural models with unmeasured confounders using instrumental variables. U.C. Berkeley Division of Biostatistics Working Paper Series, Paper 104. The Berkeley Electronic Press, Berkeley, CA.
- Hernán, M. A. and Robins, J. M. (2006). Instruments for causal inference—An epidemiologist’s dream? Epidemiology 17 360–372.
- Hirano, K., Imbens, G. W., Rubin, D. B. and Zhou, X. H. (2000). Assessing the effect of an influenza vaccine in an encouragement design. Biostatistics 1 69–88.
- Imbens, G. W. and Newey, W. K. (2009). Identification and estimation of triangular simultaneous equations models without additivity. Econometrica 77 1481–1512.
- Johnston, K. M., Gustafson, P., Levy, A. R. and Grootendorst, P. (2008). Use of instrumental variables in the analysis of generalized linear models in the presence of unmeasured confounding with applications to epidemiological research. Stat. Med. 27 1539–1556.
- Katan, M. (1986). Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet 327 507–508.
- Lawlor, D. A., Harbord, R. M., Sterne, J. A. C., Timpson, N. and Smith, G. D. (2008). Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat. Med. 27 1133–1163.
- Lee, L. F. (1981). Simultaneous equation models with discrete and censored dependent variables. In Structural Analysis of Discrete Data with Economic Applications (C. Manski and D. McFadden, eds.). MIT Press, Cambridge, MA.
- McClellan, M., McNeil, B. J. and Newhouse, J. P. (1994). Does more intensive treatment of acute myocardial infarction in the elderly reduce mortality? Analysis using instrumental variables. JAMA 272 859–866.
- McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Chapman and Hall, London.Mathematical Reviews (MathSciNet): MR727836
- Minelli, C., Thompson, J. R., Tobin, M. D. and Abrams, K. R. (2004). An integrated approach to the meta-analysis of genetic association studies using Mendelian randomization. Am. J. Epidemiol. 160 445–452.
- Mullahy, J. (1997). Instrumental-variable estimation of count data models: Applications to models of cigarette smoking behavior. Rev. Econom. Statist. 79 586–593.
- Nagelkerke, N., Fidler, V., Bernsen, R. and Borgdorff, M. (2000). Estimating treatment effects in randomized clinical trials in the presence of non-compliance. Stat. Med. 19 1849–1864.
- Palmer, T. M., Thompson, J. R., Tobin, M. D., Sheehan, N. A. and Burton, P. R. (2008). Adjusting for bias and unmeasured confounding in Mendelian randomization studies with binary responses. Int. J. Epidemiol. 37 1161–1168.
- Pearl, J. (1995). Causal diagrams for empirical research (with discussion). Biometrika 82 669–710.Mathematical Reviews (MathSciNet): MR1380809
Zentralblatt MATH: 0860.62045
Digital Object Identifier: doi:10.1093/biomet/82.4.669 - Pearl, J. (2011). Principal stratification—a goal or a tool? Internat. J. Biostatist. 7 Article 20.
- Permutt, T. and Hebel, J. R. (1989). Simultaneous-equation estimation in a clinical trial of the effect of smoking on birth weight. Biometrics 45 619–622.
- Petersen, M. L., Deeks, S. G., Martin, J. N. and van der Laan, M. J. (2007). History-adjusted marginal structural models for estimating time-varying effect modification. Am. J. Epidemiol. 166 985–993.
- Rassen, J. A., Schneeweiss, S., Glynn, R. J., Mittleman, M. A. and Brookhart, M. A. (2009). Instrumental variable analysis for estimation of treatment effects with dichotomous outcomes. Am. J. Epidemiol. 169 273–284.
- Rivers, D. and Vuong, Q. H. (1988). Limited information estimators and exogeneity tests for simultaneous probit models. J. Econometrics 39 347–366.Mathematical Reviews (MathSciNet): MR967430
Digital Object Identifier: doi:10.1016/0304-4076(88)90063-2 - Robins, J. M. (1994). Correcting for non-compliance in randomized trials using structural nested mean models. Comm. Statist. Theory Methods 23 2379–2412.Mathematical Reviews (MathSciNet): MR1293185
Zentralblatt MATH: 0825.62203
Digital Object Identifier: doi:10.1080/03610929408831393 - Robins, J. M. (2000). Marginal structural models versus structural nested models as tools for causal inference. In Statistical Models in Epidemiology, the Environment, and Clinical Trials (Minneapolis, MN, 1997). IMA Vol. Math. Appl. 116 (M. Halloran and D. Berry, eds.) 95–133. Springer, New York.Mathematical Reviews (MathSciNet): MR1731682
Zentralblatt MATH: 0986.62094
Digital Object Identifier: doi:10.1007/978-1-4612-1284-3_2 - Robins, J. and Rotnitzky, A. (2004). Estimation of treatment effects in randomised trials with non-compliance and a dichotomous outcome using structural mean models. Biometrika 91 763–783.Mathematical Reviews (MathSciNet): MR2126032
Zentralblatt MATH: 1064.62112
Digital Object Identifier: doi:10.1093/biomet/91.4.763 - Robins, J. M., VanderWeele, T. J. and Richardson, T. S. (2006). Comment on “Causal effects in the presence of non compliance: A latent variable interpretation.” Metron Internat. J. Statist. 64 288–298.Mathematical Reviews (MathSciNet): MR2352653
- Rothe, C. (2009). Semiparametric estimation of binary response models with endogenous regressors. J. Econometrics 153 51–64.Mathematical Reviews (MathSciNet): MR2558494
Digital Object Identifier: doi:10.1016/j.jeconom.2009.04.005 - Smith, R. J. and Blundell, R. W. (1986). An exogeneity test for a simultaneous equation tobit model with an application to labor supply. Econometrica 54 679–685.
- Smith, G. D. and Ebrahim, S. (2004). Mendelian randomization: Prospects, potentials, and limitations. Int. J. Epidemiol. 33 30–42.
- Smith, G. D., Harbord, R., Milton, J., Ebrahim, S. and Sterne, J. A. C. (2005). Does elevated plasma fibrinogen increase the risk of coronary heart disease? Evidence from a meta-analysis of genetic association studies. Arteriosclerosis Thrombosis and Vascular Biology 25 2228–2233.
- Stock, J. H. (1988). Nonparametric policy analysis: An application to estimating hazardous waste cleanup benefits. In Nonparametric and Semiparametric Methods in Econometrics (W. Barnett, J. Powell and G. Tauchen, eds.) Chapter 3, 77–98. Cambridge Univ. Press, Cambridge.
- Tan, Z. (2010). Marginal and nested structural models using instrumental variables. J. Amer. Statist. Assoc. 105 157–169.Mathematical Reviews (MathSciNet): MR2757199
Digital Object Identifier: doi:10.1198/jasa.2009.tm08299 - Ten Have, T. R., Joffe, M. and Cary, M. (2003). Causal logistic models for non-compliance under randomized treatment with univariate binary response. Stat. Med. 22 1255–1283.
- Thompson, J. R., Tobin, M. D. and Minelli, C. (2003). On the accuracy of estimates of the effect of phenotype on disease derived from Mendelian randomization studies. Technical report.
- van der Laan, M. J., Hubbard, A. and Jewell, N. P. (2007). Estimation of treatment effects in randomized trials with non-compliance and a dichotomous outcome. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 463–482.Mathematical Reviews (MathSciNet): MR2323763
Digital Object Identifier: doi:10.1111/j.1467-9868.2007.00598.x - Vansteelandt, S. and Goetghebeur, E. (2003). Causal inference with generalized structural mean models. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 817–835.Mathematical Reviews (MathSciNet): MR2017872
Zentralblatt MATH: 1059.62117
Digital Object Identifier: doi:10.1046/j.1369-7412.2003.00417.x - Vansteelandt, S. and Goetghebeur, E. (2005). Sense and sensitivity when correcting for observed exposures in randomized clinical trials. Stat. Med. 24 191–210.
- Vansteelandt, S., Mertens, K., Suetens, C. and Goetghebeur, E. (2009). Marginal structural models for partial exposure regimes. Biostatistics 10 46–59.
- Zeger, S. L., Liang, K.-Y. and Albert, P. S. (1988). Models for longitudinal data: A generalized estimating equation approach. Biometrics 44 1049–1060.

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- Semiparametric theory for causal mediation analysis: Efficiency bounds, multiple robustness and sensitivity analysis
Tchetgen Tchetgen, Eric J. and Shpitser, Ilya, Annals of Statistics, 2012 - Two-Sample Instrumental Variable Analyses Using Heterogeneous Samples
Zhao, Qingyuan, Wang, Jingshu, Spiller, Wes, Bowden, Jack, and Small, Dylan S., Statistical Science, 2019 - High-Dimensional Confounding Adjustment Using Continuous Spike and Slab Priors
Antonelli, Joseph, Parmigiani, Giovanni, and Dominici, Francesca, Bayesian Analysis, 2019
- Semiparametric theory for causal mediation analysis: Efficiency bounds, multiple robustness and sensitivity analysis
Tchetgen Tchetgen, Eric J. and Shpitser, Ilya, Annals of Statistics, 2012 - Two-Sample Instrumental Variable Analyses Using Heterogeneous Samples
Zhao, Qingyuan, Wang, Jingshu, Spiller, Wes, Bowden, Jack, and Small, Dylan S., Statistical Science, 2019 - High-Dimensional Confounding Adjustment Using Continuous Spike and Slab Priors
Antonelli, Joseph, Parmigiani, Giovanni, and Dominici, Francesca, Bayesian Analysis, 2019 - A causal exposure response function with local adjustment for confounding: Estimating health effects of exposure to low levels of ambient fine particulate matter
Papadogeorgou, Georgia and Dominici, Francesca, Annals of Applied Statistics, 2020 - An estimating equations approach to fitting
latent exposure models with longitudinal health outcomes
Sánchez, Brisa N., Budtz-Jørgensen, Esben, and Ryan, Louise M., Annals of Applied Statistics, 2009 - Estimating exposure response functions using
ambient pollution concentrations
Shaddick, Gavin, Lee, Duncan, Zidek, James V., and Salway, Ruth, Annals of Applied Statistics, 2008 - Instrumental Variable Estimation with a Stochastic Monotonicity Assumption
Small, Dylan S., Tan, Zhiqiang, Ramsahai, Roland R., Lorch, Scott A., and Brookhart, M. Alan, Statistical Science, 2017 - New $G$-formula for the sequential causal effect and blip effect of treatment in sequential causal inference
Wang, Xiaoqin and Yin, Li, Annals of Statistics, 2020 - Estimation of a non-parametric variable importance measure of a continuous exposure
Chambaz, Antoine, Neuvial, Pierre, and van der Laan, Mark J., Electronic Journal of Statistics, 2012 - Causal Diagrams for Interference
Ogburn, Elizabeth L. and VanderWeele, Tyler J., Statistical Science, 2014
