Statistical Science

On Instrumental Variables Estimation of Causal Odds Ratios

Stijn Vansteelandt, Jack Bowden, Manoochehr Babanezhad, and Els Goetghebeur

Full-text: Open access

Abstract

Inference for causal effects can benefit from the availability of an instrumental variable (IV) which, by definition, is associated with the given exposure, but not with the outcome of interest other than through a causal exposure effect. Estimation methods for instrumental variables are now well established for continuous outcomes, but much less so for dichotomous outcomes. In this article we review IV estimation of so-called conditional causal odds ratios which express the effect of an arbitrary exposure on a dichotomous outcome conditional on the exposure level, instrumental variable and measured covariates. In addition, we propose IV estimators of so-called marginal causal odds ratios which express the effect of an arbitrary exposure on a dichotomous outcome at the population level, and are therefore of greater public health relevance. We explore interconnections between the different estimators and support the results with extensive simulation studies and three applications.

Article information

Source
Statist. Sci., Volume 26, Number 3 (2011), 403-422.

Dates
First available in Project Euclid: 31 October 2011

Permanent link to this document
https://projecteuclid.org/euclid.ss/1320066928

Digital Object Identifier
doi:10.1214/11-STS360

Mathematical Reviews number (MathSciNet)
MR2917963

Zentralblatt MATH identifier
1246.62224

Keywords
Causal effect causal odds ratio instrumental variable marginal effect Mendelian randomization logistic structural mean model

Citation

Vansteelandt, Stijn; Bowden, Jack; Babanezhad, Manoochehr; Goetghebeur, Els. On Instrumental Variables Estimation of Causal Odds Ratios. Statist. Sci. 26 (2011), no. 3, 403--422. doi:10.1214/11-STS360. https://projecteuclid.org/euclid.ss/1320066928


Export citation

References

  • Abadie, A. (2003). Semiparametric instrumental variable estimation of treatment response models. J. Econometrics 113 231–263.
  • Amemiya, T. (1974). The non-linear two-stage least-squares estimator. J. Econometrics 2 105–110.
  • Amemiya, T. (1978). The estimation of a simultaneous equation generalized probit model. Econometrica 46 1193–1205.
  • Angrist, J. (1990). Lifetime earnings and the Vietnam era draft lottery: Evidence from social security administrative records. American Economic Review 80 313–335.
  • Angrist, J., Imbens, G. and Rubin, D. (1996). Identification of causal effects using instrumental variables. J. Amer. Statist. Assoc. 91 444–472.
  • Blundell, R. and Powell, J. L. (2003). Endogeneity in nonparametric and semiparametric regression models. In Advances in Economics and Econometrics: Theory and Applications: Eighth World Congress: Volume II. Econometric Society Monographs 36 (M. Dewatripont, L. P. Hansen and S. J. Turnovsky, eds.) 312–357. Cambridge Univ. Press, Cambridge, UK.
  • Blundell, R. W. and Powell, J. L. (2004). Endogeneity in semiparametric binary response models. Rev. Econom. Stud. 71 655–679.
  • Bowden, J., Thompson, J. R. and Burton, P. (2006). Using pseudo-data to correct for publication bias in meta-analysis. Stat. Med. 25 3798–3813.
  • Bowden, J. and Vansteelandt, S. (2011). Mendelian randomisation analysis of case–control data using structural mean models. Stat. Med. 30 678–694.
  • Bowden, J., Fischer, K., White, I. and Thompson, S. (2010). Estimating causal contrasts in RCTs using potential outcomes: A comparison of principal stratification and structural mean models. Technical report, MRC Biostatistics Unit, Cambridge.
  • Brookhart, M. A. and Schneeweiss, S. (2007). Preference-based instrumental variable methods for the estimation of treatment effects: Assessing validity and interpreting results. Int. J. Biostat. 3 Article 14.
  • Brookhart, M. A., Wang, P. S., Solomon, D. H. and Schneeweiss, S. (2006). Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable. Epidemiology 17 268–275.
  • Clarke, P. and Windmeijer, F. (2009). Identification of causal effects on binary outcomes using structural mean models. Biostatistics 11 756–770.
  • Didelez, V., Meng, S. and Sheehan, N. A. (2010). Assumptions of IV methods for observational epidemiology. Statist. Sci. 25 22–40.
  • Didelez, V. and Sheehan, N. (2007). Mendelian randomization as an instrumental variable approach to causal inference. Stat. Methods Med. Res. 16 309–330.
  • Foster, E. M. (1997). Instrumental variables for logistic regression: An illustration. Social Science Research 26 487–504.
  • Frangakis, C. E. and Rubin, D. B. (2002). Principal stratification in causal inference. Biometrics 58 21–29.
  • Greenland, S. (1987). Interpretation and choice of effect measures in epidemiologic analyses. Am. J. Epidemiol. 125 761–768.
  • Greenland, S. (2005). Multiple-bias modelling for analysis of observational data. J. Roy. Statist. Soc. Ser. A 168 267–306.
  • Greenland, S., Robins, J. M. and Pearl, J. (1999). Confounding and collapsibility in causal inference. Statist. Sci. 14 29–46.
  • Henneman, T. A., van der Laan, M. J. and Hubbard, A. E. (2002). Estimating causal parameters in marginal structural models with unmeasured confounders using instrumental variables. U.C. Berkeley Division of Biostatistics Working Paper Series, Paper 104. The Berkeley Electronic Press, Berkeley, CA.
  • Hernán, M. A. and Robins, J. M. (2006). Instruments for causal inference—An epidemiologist’s dream? Epidemiology 17 360–372.
  • Hirano, K., Imbens, G. W., Rubin, D. B. and Zhou, X. H. (2000). Assessing the effect of an influenza vaccine in an encouragement design. Biostatistics 1 69–88.
  • Imbens, G. W. and Newey, W. K. (2009). Identification and estimation of triangular simultaneous equations models without additivity. Econometrica 77 1481–1512.
  • Johnston, K. M., Gustafson, P., Levy, A. R. and Grootendorst, P. (2008). Use of instrumental variables in the analysis of generalized linear models in the presence of unmeasured confounding with applications to epidemiological research. Stat. Med. 27 1539–1556.
  • Katan, M. (1986). Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet 327 507–508.
  • Lawlor, D. A., Harbord, R. M., Sterne, J. A. C., Timpson, N. and Smith, G. D. (2008). Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat. Med. 27 1133–1163.
  • Lee, L. F. (1981). Simultaneous equation models with discrete and censored dependent variables. In Structural Analysis of Discrete Data with Economic Applications (C. Manski and D. McFadden, eds.). MIT Press, Cambridge, MA.
  • McClellan, M., McNeil, B. J. and Newhouse, J. P. (1994). Does more intensive treatment of acute myocardial infarction in the elderly reduce mortality? Analysis using instrumental variables. JAMA 272 859–866.
  • McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. Chapman and Hall, London.
  • Minelli, C., Thompson, J. R., Tobin, M. D. and Abrams, K. R. (2004). An integrated approach to the meta-analysis of genetic association studies using Mendelian randomization. Am. J. Epidemiol. 160 445–452.
  • Mullahy, J. (1997). Instrumental-variable estimation of count data models: Applications to models of cigarette smoking behavior. Rev. Econom. Statist. 79 586–593.
  • Nagelkerke, N., Fidler, V., Bernsen, R. and Borgdorff, M. (2000). Estimating treatment effects in randomized clinical trials in the presence of non-compliance. Stat. Med. 19 1849–1864.
  • Palmer, T. M., Thompson, J. R., Tobin, M. D., Sheehan, N. A. and Burton, P. R. (2008). Adjusting for bias and unmeasured confounding in Mendelian randomization studies with binary responses. Int. J. Epidemiol. 37 1161–1168.
  • Pearl, J. (1995). Causal diagrams for empirical research (with discussion). Biometrika 82 669–710.
  • Pearl, J. (2011). Principal stratification—a goal or a tool? Internat. J. Biostatist. 7 Article 20.
  • Permutt, T. and Hebel, J. R. (1989). Simultaneous-equation estimation in a clinical trial of the effect of smoking on birth weight. Biometrics 45 619–622.
  • Petersen, M. L., Deeks, S. G., Martin, J. N. and van der Laan, M. J. (2007). History-adjusted marginal structural models for estimating time-varying effect modification. Am. J. Epidemiol. 166 985–993.
  • Rassen, J. A., Schneeweiss, S., Glynn, R. J., Mittleman, M. A. and Brookhart, M. A. (2009). Instrumental variable analysis for estimation of treatment effects with dichotomous outcomes. Am. J. Epidemiol. 169 273–284.
  • Rivers, D. and Vuong, Q. H. (1988). Limited information estimators and exogeneity tests for simultaneous probit models. J. Econometrics 39 347–366.
  • Robins, J. M. (1994). Correcting for non-compliance in randomized trials using structural nested mean models. Comm. Statist. Theory Methods 23 2379–2412.
  • Robins, J. M. (2000). Marginal structural models versus structural nested models as tools for causal inference. In Statistical Models in Epidemiology, the Environment, and Clinical Trials (Minneapolis, MN, 1997). IMA Vol. Math. Appl. 116 (M. Halloran and D. Berry, eds.) 95–133. Springer, New York.
  • Robins, J. and Rotnitzky, A. (2004). Estimation of treatment effects in randomised trials with non-compliance and a dichotomous outcome using structural mean models. Biometrika 91 763–783.
  • Robins, J. M., VanderWeele, T. J. and Richardson, T. S. (2006). Comment on “Causal effects in the presence of non compliance: A latent variable interpretation.” Metron Internat. J. Statist. 64 288–298.
  • Rothe, C. (2009). Semiparametric estimation of binary response models with endogenous regressors. J. Econometrics 153 51–64.
  • Smith, R. J. and Blundell, R. W. (1986). An exogeneity test for a simultaneous equation tobit model with an application to labor supply. Econometrica 54 679–685.
  • Smith, G. D. and Ebrahim, S. (2004). Mendelian randomization: Prospects, potentials, and limitations. Int. J. Epidemiol. 33 30–42.
  • Smith, G. D., Harbord, R., Milton, J., Ebrahim, S. and Sterne, J. A. C. (2005). Does elevated plasma fibrinogen increase the risk of coronary heart disease? Evidence from a meta-analysis of genetic association studies. Arteriosclerosis Thrombosis and Vascular Biology 25 2228–2233.
  • Stock, J. H. (1988). Nonparametric policy analysis: An application to estimating hazardous waste cleanup benefits. In Nonparametric and Semiparametric Methods in Econometrics (W. Barnett, J. Powell and G. Tauchen, eds.) Chapter 3, 77–98. Cambridge Univ. Press, Cambridge.
  • Tan, Z. (2010). Marginal and nested structural models using instrumental variables. J. Amer. Statist. Assoc. 105 157–169.
  • Ten Have, T. R., Joffe, M. and Cary, M. (2003). Causal logistic models for non-compliance under randomized treatment with univariate binary response. Stat. Med. 22 1255–1283.
  • Thompson, J. R., Tobin, M. D. and Minelli, C. (2003). On the accuracy of estimates of the effect of phenotype on disease derived from Mendelian randomization studies. Technical report.
  • van der Laan, M. J., Hubbard, A. and Jewell, N. P. (2007). Estimation of treatment effects in randomized trials with non-compliance and a dichotomous outcome. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 463–482.
  • Vansteelandt, S. and Goetghebeur, E. (2003). Causal inference with generalized structural mean models. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 817–835.
  • Vansteelandt, S. and Goetghebeur, E. (2005). Sense and sensitivity when correcting for observed exposures in randomized clinical trials. Stat. Med. 24 191–210.
  • Vansteelandt, S., Mertens, K., Suetens, C. and Goetghebeur, E. (2009). Marginal structural models for partial exposure regimes. Biostatistics 10 46–59.
  • Zeger, S. L., Liang, K.-Y. and Albert, P. S. (1988). Models for longitudinal data: A generalized estimating equation approach. Biometrics 44 1049–1060.