Statistical Science

Bayesian Models and Methods in Public Policy and Government Settings

Stephen E. Fienberg

Full-text: Open access

Abstract

Starting with the neo-Bayesian revival of the 1950s, many statisticians argued that it was inappropriate to use Bayesian methods, and in particular subjective Bayesian methods in governmental and public policy settings because of their reliance upon prior distributions. But the Bayesian framework often provides the primary way to respond to questions raised in these settings and the numbers and diversity of Bayesian applications have grown dramatically in recent years. Through a series of examples, both historical and recent, we argue that Bayesian approaches with formal and informal assessments of priors AND likelihood functions are well accepted and should become the norm in public settings. Our examples include census-taking and small area estimation, US election night forecasting, studies reported to the US Food and Drug Administration, assessing global climate change, and measuring potential declines in disability among the elderly.

Article information

Source
Statist. Sci., Volume 26, Number 2 (2011), 212-226.

Dates
First available in Project Euclid: 1 August 2011

Permanent link to this document
https://projecteuclid.org/euclid.ss/1312204010

Digital Object Identifier
doi:10.1214/10-STS331

Mathematical Reviews number (MathSciNet)
MR2858384

Zentralblatt MATH identifier
1246.62037

Keywords
Census adjustment confidentiality disability measurement election night forecasting Bayesian clinical drug studies global warming small area estimation

Citation

Fienberg, Stephen E. Bayesian Models and Methods in Public Policy and Government Settings. Statist. Sci. 26 (2011), no. 2, 212--226. doi:10.1214/10-STS331. https://projecteuclid.org/euclid.ss/1312204010


Export citation

References

  • Airoldi, E., Fienberg, S. E., Joutard, C. and Love, T. (2007). Discovering latent patterns with hierarchical Bayesian mixed-membership models. In Data Mining Patterns: New Methods and Applications (F. Masseglia, P. Poncelet and M. Teisseire, eds.) 240–275. Information Science Reference (IGI Global), Hershey, PA.
  • Airoldi, E., Fienberg, S. E., Joutard, C. and Love, T. (2010). Hierarchical Bayesian mixed-membership models and latent pattern discovery. In Frontier of Statistical Decision Making and Bayesian Analysis (M.-H. Chen et al., eds.) 360–376. Springer, New York.
  • Anderson, M., Daponte, B. O., Fienberg, S. E., Kadane, J. B., Spencer, B. D. and Steffey, D. (2000). Sample-based adjustment of the 2000 census—A balanced perspective. Jurimetrics 40 341–356.
  • Anderson, M. and Fienberg, S. E. (1999). Who Counts? The Politics of Census-Taking in Contemporary America. Russell Sage Foundation, New York.
  • Ballin, M., Scanu, M. and Vicard, P. (2005). Bayesian networks and complex survey sampling from finite populations. 2005 FCSM Conference Papers, Federal Committee on Statistical Methodology, US Office of Management and Budget. Available at http://www.fcsm.gov/05papers/Ballin_Scanu_Vicard_IIC.pdf.
  • Bayes, T. (1763). An essay towards solving a problem in the doctrine of chances. Philos. Trans. Roy. Soc. London 53 370–418.
  • Beckman, M. (2006). Are Bayes’ days upon us? Statistical methods could change the conduct of clinical trials. J. Nat. Cancer Inst. 98 1512–1513.
  • Berger, J. O. (2006). The case for objective Bayesian analysis. Bayesian Anal. 1 385–402.
  • Berliner, L. M., Levine, R. A. and Shea, D. J. (2000). Bayesian climate change assessment. J. Climate 13 3806–3820.
  • Bernardo, J. M. and Girón, F. J. (1992). Robust sequential prediction from non-random samples: The election night forecasting. In Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, D. V. Lindley and A. F. M. Smith, eds.) 3–60. Oxford Univ. Press, Oxford.
  • Berry, D. A. (1991). Bayesian methods in phase III trials. Drug Inform. J. 25 345–368.
  • Berry, D. A. (1993). A case for Bayesianism in clinical trials. Stat. Med. 12 1377–1393.
  • Berry, D. A. (1997). Using a Bayesian approach in medical device development. Technical report. Available from Division of Biostatistics, Center for Devices and Radiological Health, FDA.
  • Berry, D. A. and Stangl, D. K., eds. (1996). Bayesian Biostatistics. Dekker, New York.
  • Bishop, Y. M. M., Fienberg, S. E. and Holland, P. W. (with contributions by R. J. Light and F. Mosteller) (1975). Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge, MA.
  • Brillinger, D. R. (2002). John W. Tukey: His life and professional contributions. Ann. Statist. 30 1535–1575.
  • Brown, P. J., Firth, D. and Payne, C. (1997). Forecasting on British election night 1997. J. Roy. Statist. Soc. Ser. A 162 211–226.
  • Bunker, J. P., Forrest Jr., W. H., Mosteller, F. and Vandam, L. D., eds. (1969). The National Halothane Study, Report of the Subcommittee on the National Halothane Study of the Committee on Anesthesia. Division of Medical Sciences, National Academy of Sciences—National Research Council, US Government Printing Office, Washington, DC.
  • Chandler, R., Rougier, J. and Collins, M. (2010). Climate change: Making certain what the uncertainties are. Significance 7 9–12.
  • Chu, S. (2005). Biological solution to the energy crisis. AAPPS Bull. 15 2–11.
  • D’Orazio, M., Di Zio, M. and Scanu, M. (2006). Statistical Matching Theory and Practice. Wiley, Chichester.
  • de Finetti, B. (1937). La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. Henri Poincaré. Translated into English as Foresight: Its logical laws, its subjective sources. In Studies in Subjective Probability (H. E. Kyburg and H. E. Smokler, eds.) 93–158. Wiley, New York, 1964.
  • Diaconis, P. and Freedman, D. A. (1986). On the consistency of Bayes’ estimates (with discussion). Ann. Statist. 14 1–87.
  • Dobra, A., Fienberg, S. E. and Trottini, M. (2003). Assessing the risk of disclosure of confidential categorical data (with discussion). In Bayesian Statistics 7 (J. Bernardo et al., eds.) 125–144. Oxford Univ. Press, Oxford.
  • Donnelly, P. (2005). Appealing statistics. Significance 2 46–48.
  • Doyle, P., Lane, J., Theeuwes, J. and Zayatz, L., eds. (2001). Confidentiality, Disclosure and Data Access: Theory and Practical Applications for Statistical Agencies. Elsevier, Amsterdam.
  • Duncan, G. T., Fienberg, S. E., Krishnan, R., Padman, R. and Roehrig, S. F. (2001). Disclosure limitation methods and information loss for tabular data. In Confidentiality, Disclosure and Data Access: Theory and Practical Applications for Statistical Agencies (P. Doyle, J. Lane, J. Theeuwes and L. Zayatz, eds.) 135–166. Elsevier, Amsterdam.
  • DuMouchel, W. (1999). Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system. Amer. Statist. 53 177–202.
  • Efron, B. and Morris, C. N. (1973). Stein’s estimator and its competitors—an empirical Bayesian approach. J. Amer. Statist. Assoc. 68 117–130.
  • Ericksen, E. P. and Kadane, J. B. (1985). Estimating the population in a census year: 1980 and beyond (with discussion). J. Amer. Statist. Assoc. 80 927–943.
  • Ericksen, E. P., Kadane, J. B. and Tukey, J. W. (1989). Adjusting the 1980 census of population and housing. J. Amer. Statist. Assoc. 84 927–943.
  • Erosheva, E. A., Fienberg, S. E. and Joutard, C. (2007). Describing disability through individual-level mixture models for multivariate binary data. Ann. Appl. Stat. 1 502–537.
  • Esper, J., Cook, E. R. and Schweingruber, F. H. (2002a). Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295 2250–2253.
  • Fay, R. E. and Herriot, R. A. (1979). Estimation of income for small places: An application of James–Stein procedures to census data. J. Amer. Statist. Assoc. 74 269–277.
  • Fienberg, S. E. (2006a). When did Bayesian inference become “Bayesian”? Bayesian Anal. 1 1–40.
  • Fienberg, S. E. (2006b). Does it make sense to be an “objective Bayesian”? (Comment on Articles by Berger and by Goldstein.) Bayesian Anal. 1 429–432.
  • Fienberg, S. E. (2007). Memories of election night predictions past: Psephologists and statisticians at work. Chance 20 6–15.
  • Fienberg, S. E. (2009). The relevance or irrelevance of weights for confidentiality and statistical analyses. J. Privacy Confidentiality 1 183–195.
  • Fienberg, S. E. and Kadane, J. B. (1983). The presentation of Bayesian statistical analyses in legal proceedings. Statistician 32 88–98.
  • Fienberg, S. E., Makov, U. E. and Sanil, A. P. (1997). A Bayesian approach to data disclosure. Optimal intruder behavior for continuous data. J. Official Statist. 13 75–90.
  • Fienberg, S. E., Makov, U. E. and Steele, R. J. (1998). Disclosure limitation using perturbation and related methods for categorical data (with discussion). J. Official Statist. 14 485–502.
  • Fienberg, S. E. and Tanur, J. M. (1996). Reconsidering the fundamental contributions of Fisher and Neyman on experimentation and sampling. Int. Statist. Rev. 64 237–253.
  • Food and Drug Administration (2006). Guidance for industry and FDA staff: Guidance for the use of Bayesian statistics in medical device clinical trials. Office of Surveillance and Biometrics, Division of Biostatistics, Center for Devices and Radiological Health, Food and Drug Administration, US Dept. Health and Human Services (issued February 5, 2010).
  • Food and Drug Administration (2010). Draft guidance for industry and FDA staff: Guidance for the use of Bayesian statistics in medical device clinical trials. Office of Surveillance and Biometrics, Division of Biostatistics, Center for Devices and Radiological Health, Food and Drug Administration, US Dept. Health and Human Services. Available at http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm071072.htm.
  • Forster, J. J. and Webb, E. L. (2007). Bayesian disclosure risk assessment: Predicting small frequencies in contingency tables. J. Roy. Statist. Soc. Ser. C 56 551–570.
  • Franconi, L. and Stander, J. (2002). A model based method for disclosure limitation of business microdata. The Statistician 51 51–61.
  • Freedman, D. A. (1995). Some issues in the foundation of statistics (with discussion). Foundations of Science 1 19–83.
  • Freedman, D. A. and Navidi, W. C. (1986). Regression models for adjusting the 1980 census (with discussion). Statist. Sci. 1 1–39.
  • Gibbons, R. D., Brown, C. H., Hur, K., Marcus, S. M., Bhaumik, D. K., Erkens, J. A., Herings, R. M. C. and Mann, J. J. (2007). Early evidence on the effects of regulators’ suicidality warnings on SSRI prescriptions and suicide in children and adolescents. Amer. J. Psych. 164 1356–1363.
  • Goldstein, M. (2006). Subjective Bayesian analysis: Principles and practice. Bayesian Anal. 1 403–420.
  • Good, I. J. (1965). The Estimation of Probabilities. MIT Press, Cambridge, MA.
  • Hegerl, G. C., Crowley, T. J., Hyde, W. T. and Frame, D. J. (2006). Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440 1029–1032.
  • Hobbs, B. F. (1997). Bayesian methods for analysing climate change and water resource uncertainties. J. Environ. Manag. 49 53–72.
  • Huang, S. P., Pollack, H. N. and Shen, P.-Y. (2000). Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature 403 756–758.
  • Jiang, J. and Lahiri, P. (2006). Mixed model prediction and small area estimation. Test 15 1–96.
  • Jones, P. D., Osborn, T. J., Briffa, K. R., Folland, C. K., Horton, E. B., Alexander, L. V., Parker, D. E. and Rayner, N. A. (2001). Adjusting for sampling density in grid box land and ocean surface temperature time series. J. Geophys. Res. 106 3371–3380.
  • Kadane, J. B. (1996). Bayesian Methods and Ethics in a Clinical Trial Design. Wiley, New York.
  • Kadane, J. B. (2008). Statistics in the Law: A Practitioner’s Guide, Cases, and Materials. Oxford Univ. Press, Oxford.
  • Kaizar, E. E., Greenhouse, J. B., Seltman, H. and Kelleher, K. (2006). Do antidepressants cause suicidality in children? A Bayesian meta-analysis. Clin. Trials 3 73–98.
  • Kardaun, O. J. W. F., Salomé, D., Schaafsma, W., Steerneman, A. G. M., Willems, J. C. and Cox, D. R. (2003). Reflections on fourteen cryptic issues concerning the nature of statistical inference (with discussion by T. Schweder and J. M. Bernardo). Int. Statist. Rev. 71 277–318.
  • Karl, T. (2001). Testimony before the US Senate Committee on Governmental Affairs, July 18, 2001. Available at http://www.senate.gov/~govt-aff/071801_karl.htm.
  • Keith, D. W. (1996). When is it appropriate to combine expert judgments? Climatic Change 33 139–143.
  • Lindley, D. V. and Smith, A. F. M. (1972). Bayes estimates for the linear model (with discussion). J. Roy. Statist. Soc. Ser. B 34 1–41.
  • Little, R. J. A. (2009). Weighting and prediction in sample surveys (with discussion). Calcutta Statist. Assoc. Bull. 60 1–48.
  • Madigan, D., Ryan, P., Simpson, S. and Zorych, I. (2010). Bayesian methods for drug safety surveilance. In Bayesian Statistics 9 (J. Bernardo et al., eds.). Oxford Univ. Press, Oxford. To appear.
  • Mann, M. E. and Jones, P. D. (2003a). 2,000 year Hemispheric multi-proxy temperature reconstructions. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2003-051. NOAA/NGDC Paleoclimatology Program, Boulder, CO.
  • Manrique-Vallier, D. (2010). Longitudinal mixed membership models with applications. Ph.D. dissertation, Dept. Statistics, Carnegie Mellon Univ.
  • Manrique-Vallier, D. and Fienberg, S. E. (2010). Longitudinal mixed-membership models for survey data on disability. In Longitudinal Surveys: From Design to Analysis: Proceedings of XXV International Methodology Symposium, 2009. Statistics Canada, Ottawa, QC, Canada.
  • Manton, K. G. and Gu, X. (2001). Changes in the prevalence of chronic disability in the United States black and nonblack population above age 65 from 1982 to 1999. Proc. Natl. Acad. Sci. USA 98 6354–6359.
  • Manton, K. G., Gu, X. and Lamb, V. L. (2006). Change in chronic disability from 1982 to 2004/2005 as measured by long-term changes in function and health in the US elderly population. Proc. Natl. Acad. Sci. USA 103 18374–18379.
  • Manton, K. G., Woodbury, M. A. and Tolley, H. D. (1994). Statistical Applications Using Fuzzy Sets. Wiley, New York.
  • Min. S.-K. and Andreas Hense, A. (2006). A Bayesian assessment of climate change using multimodel ensembles. Part I: Global mean surface temperature. J. Climate 19 2769–2790.
  • Min. S.-K. and Andreas Hense, A. (2007). A Bayesian assessment of climate change using multimodel ensembles. II: Regional and seasonal mean surface temperatures. J. Climate 20 3237–3256.
  • Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M. and Karlen, W. (2005a). 2,000-year Northern Hemisphere temperature reconstruction. IGBP PAGES/World Data Center for Paleoclimatology Data. Contribution Series #2005-019. NOAA/NGDC Paleoclimatology Program, Boulder, CO.
  • Morgan, M. G. and Keith, D. W. (1995). Subjective judgments by climate experts. Environ. Sci. Technol. 29 A468–A476.
  • Mosteller, F. and Wallace, D. L. (1964). Inference and Disputed Authorship: The Federalist. Addison-Wesley, Reading, MA.
  • National Academy of Sciences (2008). Understanding and Responding to Climate Change. Highlights of National Academies Reports. National Academy Press, Washington, DC.
  • National Research Council (2006). Surface Temperature Reconstructions for the Last 2,000 Years. National Academy Press, Washington, DC.
  • Neyman, J. (1934). On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection (with discussion). J. Roy. Statist. Soc. Ser. B 97 558–606.
  • Oerlemans, J. (2005b). Global Glacier length temperature reconstruction. IGBP PAGES/World Data Center for Paleoclimatology. Data Contribution Series #2005-059. NOAA/NCDC Paleoclimatology Program, Boulder, CO.
  • Polettini S. and Stander, J. (2004). A Bayesian hierarchical model approach to risk estimation in statistical disclosure limitation. In Privacy in Statistical Databases (J. Domingo-Ferrer and V. Torra, eds.). Lecture Notes in Comput. Sci. 3050 247–261. Springer, Berlin.
  • Raghunathan, T. E., Reiter, J. P. and Rubin, D. B. (2003). Multiple imputation for statistical disclosure limitation. J. Official Statist. 19 1–16.
  • Rao, J. N. K. (2003). Small Area Estimation. Wiley, New York.
  • Rinott, Y. and Shlomo, N. (2007). A smoothing model for sample disclosure risk estimation. In Complex Datasets and Inverse Problems: Tomography, Networks and Beyond. IMS Lecture Notes Monogr. Ser. 54 161–171. IMS, Beachwood, OH.
  • Rubin, D. B. (1993). Discussion: Statistical disclosure limitation. J. Official Statist. 9 462–468.
  • Sansó B., Forest, C. E. and Zantedeschi, D. (2008). Inferring climate system properties using a computer model (with discussion). Bayesian Anal. 3 1–62.
  • Schneider, S. H. (2002). Global warming: Neglecting the complexities. Sci. Amer. 286 62–65.
  • Scott, A. and Smith, T. M. F. (1969). Estimation for multi-stage surveys. J. Amer. Statist. Assoc. 64 830–840.
  • Scott, A. and Smith, T. M. F. (1971). Bayes estimates for subclasses in stratified sampling. J. Amer. Statist. Assoc. 66 834–836.
  • Simon, R. (1999). Bayesian design and analysis of active control clinical trials. Biometrics 55 484–487.
  • Spiegelhalter, D. J. (2004). Incorporating Bayesian ideas into health-care evaluation. Statist. Sci. 19 156–174.
  • Spiegelhalter, D. J., Freedman, L. S. and Parmar, M. K. B. (1994). Bayesian approaches to randomized trials. J. Roy. Statist. Soc. Ser. A 157 356–416.
  • Spiegelhalter, D. J., Myles, J. P., Jones, D. R. and Abrams, K. R. (2000). Bayesian method in health technology assessment: A review. Health Technology Assessment 4 1–130.
  • Taroni, F., Aitkin, C., Garbolino, P. and Biedermann, A. (2006). Bayesian Networks and Probabilistic Inference in Forensic Science. Wiley, Chichester.
  • Tebaldi, C., Smith, R. L., Nychka, D. and Mearns, L. O. (2005). Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles. J. Climate 18 1524–1540.
  • Tebaldi, C., Smith, R. L. and Sansó, B. (2010). Characterizing uncertainty of future climate change projections using hierarchical Bayesian models. In Bayesian Statistics 9 (J. Bernardo et al., eds.). Oxford Univ. Press, Oxford. To appear.
  • Ting, D., Fienberg, S. E. and Trottini, M. (2008). Random orthogonal matrix masking methodology for microdata release. Int. J. Inform. Comput. Secur. 2 86–105.
  • Trevisani, M. and Torelli, N. (2004). Small area estimation by hierarchical Bayesian models: Some practical and theoretical issues. In Atti della XLII Riunione Scientifica, Società Italiana di Statistica 273–276. Available at http://www.sis-statistica.it/files/pdf/atti/RSBa2004p273-276.pdf.
  • Trottini, M. and Fienberg, S. E. (2002). Modelling user uncertainty for disclosure risk and data utility. Internat. J. Uncertainty Fuzziness Knowledge-Based Systems 10 511–528.
  • Wegman, E. J., Scott, D. W. and Said, Y. (2006). Ad hoc committee report on the ‘hockey stick’ global climate reconstruction. A Report to the House Committee on Energy and Commerce and House Subcommittee on Oversight and Investigations. Available at http://energycommerce.house.gov/108/home/07142006_Wegman_Report.pdf.
  • Zickfeld, K., Leverman, A., Keith, D. W., Kuhlbrodt, T., Morgan, M. G. and Rahmstorf, S. (2007). Expert judgements on the response of the Atlantic meridional overturning circulation to climate change. Climatic Change 82 235–265.

See also

  • Discussion of: Bayesian Models and Methods in Public Policy and Government Settings by S. E. Fienberg.
  • Discussion of: Bayesian Models and Methods in Public Policy and Government Settings by S. E. Fienberg.
  • Discussion of: Bayesian Models and Methods in Public Policy and Government Settings by S. E. Fienberg.
  • Rejoinder: Bayesian Models and Methods in Public Policy and Government Settings.