Statistical Science

Bayesian Statistics Then and Now

Andrew Gelman

Full-text: Open access

Article information

Statist. Sci. Volume 25, Number 2 (2010), 162-165.

First available in Project Euclid: 19 November 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Gelman, Andrew. Bayesian Statistics Then and Now. Statist. Sci. 25 (2010), no. 2, 162--165. doi:10.1214/10-STS308B.

Export citation


  • Efron, B. and Morris, C. (1971). Limiting the risk of Bayes and empirical Bayes estimates—Part I: The Bayes case. J. Amer. Statist. Assoc. 66 807–815.
  • Gelman, A., Bois, F. Y. and Jiang, J. (1996). Physiological pharmacokinetic analysis using population modeling and informative prior distributions. J. Amer. Statist. Assoc. 91 1400–1412.
  • Gelman, A., Hill, J. and Yajima, M. (2009). Why we (usually) don’t have to worry about multiple comparisons. Technical report, Dept. Statistics, Columbia Univ.
  • Gelman, A. and Jakulin, A. (2007). Bayes: Radical, liberal, or conservative? Statist. Sinica 17 422–426.
  • Gelman, A. and Tuerlinckx, F. (2000). Type S error rates for classical and Bayesian single and multiple comparison procedures. Comput. Statist. 15 373–390.
  • Gelman, A. and Weakliem, D. (2009). Of beauty, sex, and power: Statistical challenges in estimating small effects. Amer. Sci. 97 310–316.
  • Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2003). Bayesian Data Analysis, 2nd ed. Chapman and Hall, London.
  • Lax, J. R. and Phillips, J. H. (2009). Gay rights in the states: Public opinion and policy responsiveness. American Political Science Review 103.
  • Lindley, D. V. and Smith, A. F. M. (1972). Bayes estimates for the linear model. J. Roy. Statist. Soc. Ser. B 34 1–41.