Statistical Science

Comment: The Need for Syncretism in Applied Statistics

Sander Greenland

Full-text: Open access

Article information

Statist. Sci., Volume 25, Number 2 (2010), 158-161.

First available in Project Euclid: 19 November 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Greenland, Sander. Comment: The Need for Syncretism in Applied Statistics. Statist. Sci. 25 (2010), no. 2, 158--161. doi:10.1214/10-STS308A.

Export citation


  • Bedrick, E. J., Christensen, R. and Johnson, W. (1996). A new perspective on generalized linear models. J. Amer. Statist. Assoc. 91 1450–1460.
  • Bedrick, E. J., Christensen, R. and Johnson, W. (1997). Bayesian binomial regression: Predicting survival at a trauma center. Amer. Statist. 51 211–218.
  • Box, G. (1980). Sampling and Bayes inference in scientific modeling and robustness. J. Roy. Statist. Soc. Ser. A 143 383–430.
  • Box, G. (1983). An apology for ecumenism in statistics. In: Scientific Inference, Data Analysis, and Robustness (G. Box, T. Leonard and C.-F. Wu, eds.) 51–84. Academic Press, New York.
  • Box, G. (1990). Comment on “The unity and diversity of probability” by Glen Shafer. Statist. Sci. 5 448–449.
  • Diaconis, P. and Freedman, D. (1986). On the consistency of Bayes estimates (with discussion). Ann. Statist. 14 1–67.
  • Efron, B. (2005). Bayesians, frequentists, and scientists. J. Amer. Statist. Assoc. 100 1–5.
  • Efron, B. and Morris, C. N. (1973). Stein’s estimation rule and its competitors—an empirical Bayes approach. J. Amer. Statist. Assoc. 68 117–130.
  • Efron, B. and Morris, C. N. (1975). Data analysis using Stein’s estimator and its generalizations. J. Amer. Statist. Assoc. 70 311–319.
  • Good, I. J. (1983). Good Thinking. Univ. Minnesota Press, Minneapolis.
  • Good, I. J. (1987). Hierarchical Bayesian and empirical Bayesian methods (letter). Amer. Statist. 41 92.
  • Greenland, S. (2000). When should epidemiologic regressions use random coefficients? Biometrics 56 915–921.
  • Greenland, S. (2005a). Multiple-bias modeling for analysis of observational data (with discussion). J. Roy. Statist. Soc. Ser. A 168 267–308.
  • Greenland, S. (2005b). Contribution to discussion of Prentice, Pettinger, and Anderson. Biometrics 61 920–921.
  • Greenland, S. (2006). Bayesian perspectives for epidemiologic research. I. Foundations and basic methods (with comment and reply). International Journal of Epidemiology 35 765–778.
  • Greenland, S. (2007). Bayesian perspectives for epidemiologic research. II. Regression analysis. International Journal of Epidemiology 36 195–202.
  • Greenland, S. (2009a). Relaxation penalties and priors for plausible modeling of nonidentified bias sources. Statist. Sci. 24 195–210.
  • Greenland, S. (2009b). Dealing with uncertainty about investigator bias: Disclosure is informative. Journal of Epidemiology and Community Health 63 593–598.
  • Greenland, S. (2009c). Bayesian perspectives for epidemiologic research. III. Bias analysis via missing-data methods. International Journal of Epidemiology 38 1662–1673.
  • Greenland, S. and Maldonado, G. (1994). The interpretation of multiplicative model parameters as standardized parameters. Stat. Med. 13 989–999.
  • Gustafson, P. (2005). On model expansion, model contraction, identifiability, and prior information: Two illustrative scenarios involving mismeasured variables (with discussion). Statist. Sci. 20 111–140.
  • Gustafson, P. and Greenland, S. (2006). The performance of random coefficient regression in accounting for residual confounding. Biometrics 62 760–768.
  • Gustafson, P. and Greenland, S. (2009). Interval estimation for messy observational data. Statist. Sci. 24 328–342.
  • Higgins, J. P. T. and Spiegelhalter, D. (2002). Being skeptical about meta-analyses: A Bayesian perspective on magnesium trials in myocardial infarction. International Journal of Epidemiology 31 96–104, appendix.
  • Lash, T. L., Fox, M. P. and Fink, A. K. (2009). Applying Quantitative Bias Analysis to Epidemiologic Data. Springer, New York.
  • Lawlor, D. A., Davey Smith, G., Bruckdorfer, K. R., Kundu, D. and Ebrahim, S. (2004). Those confounded vitamins: What can we learn from the differences between observational versus randomized trial evidence? Lancet 363 1724–1727.
  • Leamer, E. E. (1974). False models and post-data model construction. J. Amer. Statist. Assoc. 69 122–131.
  • Leamer, E. E. (1978). Specification Searches: Ad Hoc Inference with Nonexperimental Data. Wiley, New York.
  • Madigan, D., Mosurski, K. and Almond, R. G. (1997). Graphical explanation in belief networks. J. Comput. Graph. Statist. 6 160–181.
  • Robins, J. M. and Greenland, S. (1986). The role of model selection in causal inference from nonexperimental data. American Journal of Epidemiology 123 392–402.
  • Rothman, K. J., Greenland, S. and Lash, T. L., eds. (2008). Modern Epidemiology, 3rd ed. Lippincott-Williams-Wilkins, Philadelphia.
  • Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. Ann. Statist. 12 1151–1172.
  • Samaniego, F. J. and Reneau, D. (1994). Toward a reconciliation of the Bayesian and frequentist approaches to point estimation. J. Amer. Statist. Assoc. 89 947–957.
  • Wakefield, J. (2009). Multi-level modelling, the ecologic fallacy, and hybrid study designs. International Journal of Epidemiology 38 330–336.
  • Wakefield, J., De Vocht, F. and Hung, R. J. (2010). Bayesian mixture modeling of gene-environment and gene-gene interactions. Genetic Epidemiology 34 16–25.