Statistical Science

Rejoinder: Harold Jeffreys’s Theory of Probability Revisited

Christian P. Robert, Nicolas Chopin, and Judith Rousseau

Full-text: Open access


We are grateful to all discussants of our re-visitation for their strong support in our enterprise and for their overall agreement with our perspective. Further discussions with them and other leading statisticians showed that the legacy of Theory of Probability is alive and lasting.

Article information

Statist. Sci. Volume 24, Number 2 (2009), 191-194.

First available in Project Euclid: 14 January 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Robert, Christian P.; Chopin, Nicolas; Rousseau, Judith. Rejoinder: Harold Jeffreys’s Theory of Probability Revisited. Statist. Sci. 24 (2009), no. 2, 191--194. doi:10.1214/09-STS284REJ.

Export citation


  • Bayarri, M. and Garcia-Donato, G. (2007). Extending conventional priors for testing general hypotheses in linear models. Biometrika 94 135–152.
  • Berger, J. and Wolpert, R. (1988). The Likelihood Principle, 2nd ed. IMS, Hayward, CA.
  • Berger, J., Bernardo, J. and Sun, D. (2009). Natural induction: An objective Bayesian approach. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 103 125–135.
  • Bickel, P. and Ghosh, J. (1990). A decomposition for the likelihood ratio statistic and the Bartlett correction—a Bayesian argument. Ann. Statist. 18 1070–1090.
  • Gelman, A., Carlin, J. Stern, H. and Rubin, D. (2001). Bayesian Data Analysis, 2nd ed. Chapman and Hall, New York.
  • Robert, C. (1994). The Bayesian Choice. Springer, New York.
  • Templeton, A. (2008). Statistical hypothesis testing in intraspecific phylogeography: Nested clade phylogeographical analysis vs. approximate Bayesian computation. Molecular Ecology 18 319–331.